0 回顾:回归模型的基本假设
线性回归有几个基本的前置假设条件
- 零均值:随机误差项均值为0 ,保证未考虑的因素对被解释变量没有系统性的影响
- 同方差:随机误差项方差相同,在给定的情况下,的条件方差为某个常数
- 无自相关:两个之间不相关,
- 正态分布:符合正态分布
- 解释变量是非随机变量,其观测值是常数
- 解释变量之间不存在精确的线性关系
- 样本个数要多与解释变量的个数
1、常见的不满足基本假设的情况
1.1、异方差
回归模型的中的异方差是指随机误差项的方差不是一个常数,而是随着自变量的取值变化而变化。
由于不满足回归分析中的同方差的前提假设,异方差将可能带来以下几个问题:
-
对使用最小二乘法(OLS)求解参数时 ,参数估计值虽然无偏,但不是最小方差线性无偏估计
-
参数显著性检验失效
-
回归方程的应用效果不理想
造成异方差的常见原因:
- 模型缺少了某些解释变量,缺省变量本身的方差被包含在了随机误差的方差中
- 模型本身选取有误,比如原来是非线性的,结果使用了线性模型
- 其他原因,包括不限于样本量过少、测量误差、异常数据、时序分析或者使用面板数据等
异方差的检验:
残差图分析:
- 坐标选择:纵坐标为残差,横坐标视情况而定,可选择:或者观测时间或序号
- 判断:散点随机散布、无规律则表明满足基本假设,有明显规律或者呈现一定趋势,则有异方差性