2-4回归模型的诊断和优化 - 违背基本假设

本文回顾了回归模型的基本假设,包括零均值、同方差、无自相关和正态分布。接着,讨论了模型在实际中常见的不满足假设的情况,如异方差性及其检验方法,如残差图分析和等级相关系数法。此外,还介绍了自相关问题,包括自相关的影响和检验方法,如DW检验。最后,提到了异常值的识别和处理,如通过删除异常残差或应用学生化残差来改善模型拟合。
摘要由CSDN通过智能技术生成

0 回顾:回归模型的基本假设

线性回归有几个基本的前置假设条件

  • 零均值:随机误差项均值为0 ,保证未考虑的因素对被解释变量没有系统性的影响
  • 同方差:随机误差项方差相同,在给定x的情况下,\varepsilon的条件方差为某个常数\sigma^{ 2 }
  • 无自相关:两个\varepsilon之间不相关,COV\left (\varepsilon _{i}, \varepsilon _{j}\right )=0,i\neq j
  • 正态分布:\varepsilon符合正态分布\varepsilon _{i}\sim N\left ( 0,\sigma ^{2} \right )
  • 解释变量x_{1},x_{1},x_{1},...,x_{p}是非随机变量,其观测值是常数
  • 解释变量之间不存在精确的线性关系
  • 样本个数要多与解释变量的个数

1、常见的不满足基本假设的情况

1.1、异方差

回归模型的中的异方差是指随机误差项的方差不是一个常数,而是随着自变量的取值变化而变化。

由于不满足回归分析中的同方差的前提假设,异方差将可能带来以下几个问题:

  • 对使用最小二乘法(OLS)求解参数时 ,参数估计值虽然无偏,但不是最小方差线性无偏估计

  • 参数显著性检验失效

  • 回归方程的应用效果不理想

造成异方差的常见原因:

  • 模型缺少了某些解释变量,缺省变量本身的方差被包含在了随机误差的方差中

y=\beta _{0}+\beta _{1}x _{1}+\varepsilon         y=\beta _{0}+\beta _{1}x _{1}+\beta _{2}x _{2}+\varepsilon

  • 模型本身选取有误,比如原来是非线性的,结果使用了线性模型

  • 其他原因,包括不限于样本量过少、测量误差、异常数据、时序分析或者使用面板数据等

异方差的检验:

 残差图分析:

  • 坐标选择:纵坐标为残差e_{i},横坐标视情况而定,可选择:x,\hat{y}或者观测时间或序号
  • 判断:散点随机散布、无规律则表明满足基本假设,有明显规律或者呈现一定趋势,则有异方差性
在0附近,小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值