机器学习基础知识

机器学习:
    1.概念:Simple and efficient tools for predictive data analysis
    【预测数据分析结果】

    用机器代替人做决策

    数据集 =》 训练 =》 模型 

    2.Built on NumPy, SciPy, and matplotlib、pandas


2.机器学习里面的常用术语 :

    (1)数据集准备
        色泽= 绿色 、根=弯曲 、 敲声 = 浑浊  =》 熟的 
        色泽= 黑色 、根=弯曲 、 敲声 = 沉闷  =》 生的 
        色泽= 红色 、根=弯曲 、 敲声 = 清脆  =》 生的

    数据集:这组数据 的集合 
    样本:每一条数据
    维度:西瓜的判断条件
    标签(label):结果的判断就是标签

    (2)模型怎么来的? 

        数据集 =》 训练 =》基于某个算法 =》 模型 【数学公式】

    机器学习的模型作用:
        输入三个维度 =》 判断出结果

    机器学习:  数据科学家 【基于数据 =》 分析 一些问题】
        1.数学 =》 算法 knn、kmeans 、线性回归、逻辑
        2.会写代码


3.机器学习的种类:
    (1)有监督学习: 结果是 label的
        1.分类:
            通过模型 判断结果  生的还是熟的
        2.回归: 
            通过模型 判断结果 (熟了 0.9)
    (2)无监督学习:结果是 没有label的
        1.聚类: =》 sql  group by 
    (3)半监督学习: 
        使用标记数据+为标记数据 进行训练
    (4)强化学习:
        阿法狗

4.如何判断模型好不好? 
    (1)正确率、错误率
        正确率:(tp+tn) / (tp+tn+fp+fn)
        错误率率:(fp+fn) / (tp+tn+fp+fn)
    (2)精确率、召回率
        P 精确率:(tp) /(tp+fp) 
        R 召回率:(tp) /(tp+fn)
    (3)真正率、假正率:
        tpr= 
        fpr=
        roc 和auc 

5.Numpy pandas matplotlib
统计分析、假设、线下回归、逻辑回归、knn、朴素贝叶斯、aqi、时间序列、决策树、kmeans、分类模型评估

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值