研究背景及其意义
接触式生命体征检测主要依赖如心电图(ECG)或光电容积描记(PPG)传感器等专用医疗设备,这些设备必须与人体皮肤物理接触来测量心跳间期(IBIs)以获取心率变异性(HRV)。然而,这种接触式检测存在诸多弊端:
1.用户舒适性差:
长时间与皮肤接触会让使用者感到不适,并且在某些情况下,可能会引发皮肤过敏反应,给用户带来额外的健康风险。
2.难以满足长期监测需求:
由于上述舒适性和便携性问题,用户难以长期坚持使用,不利于对生命体征进行持续、长期的监测,而长期监测对于某些疾病的早期诊断和健康状况评估至关重要。
毫米波雷达在非接触式生命体特征检测中具有以下优势:
1.受环境因素影响小
能够穿透材料和衣物,同时受到烟雾、温湿度等环境因素的影响较小,可实现全天候、全天时地进行生命体征监测。
2.保护隐私
能够有效地避免隐私泄露的风险,具备高度的可靠性和私密性。
毫米波雷达在人体生命体征监测的挑战
1.心跳信号检测困难
心跳引起的振动明显弱于呼吸引起的振动 心跳信号易被呼吸信号淹没,估计心跳信号比呼吸信号困难很多
2.信号受多种因素影响
人体姿态变化 呼吸和心跳频率的不规则变化 环境噪声等 准确可靠的信号处理面临巨大挑战
3.信号分离要求高
分离呼吸、心跳信号时 需适应信号强度变化、消除噪声干扰 要有足够适应性处理不同人体构造和生理条件下的信号变化
毫米波雷达生命体征监测
线性调频连续波
信号处理算法
主要包括生命体征信号预处理、信号分离、生命体征检测3个步骤。对中频信号进行模数转换后,首先需要通过距离维FFT,确定被测目标对应的距离范围,然后通过反正切函数计算目标当前的相位信息,该相位信息即可表示目标与雷达的距离变化,但在计算机运行中存在相位卷绕的问题,因此需要对相位进行解缠绕。在获得准确的相位变化信息后,通过IIR数字滤波器对呼吸和心跳信号进行分离。最后通过频域FFT算法计算心率和呼吸速率。
生命体征信号预处理
FMCW 雷达的最大探测距离与 ADC 的采样 率F_s的关系为
对单个chirp信号进行FFT,以获得中频信号的 的频谱。由上式可得频谱峰值即对应被测目 标的距离,称之为距离维FFT。
目标距离像的峰值由复信号表示,其实部和虚部构成了信号的真实相位信息。在数学上可通过反正切函数得到回波信号的相位值,但在计算机运行中存在相位卷绕问题。将缠绕相位展开,需要正确判断相位跳变点,再对相位跳变点进行修正。
静态杂波滤除
从图中可以看出静态杂波主要存在距离较近的地方,且信号能量比较强,因此我们采用直接置零,将RangeFFT 1-10列的数据的赋值置0。
相位解缠绕
相位缠绕问题通常发生在相位值超出一定范围时,导致相位值不连续或出现跳变的情况 。 在理论上 , 反正切算法可以在线性范围内有效地恢复目标信号的相位,只要相位保持在区间(-π/2,π/2)内。然而,当相位超出这个范围时,就会出现相位缠绕问题。相位缠绕问题是由于正切函数的性质导致的,它会导致一对多的映射关系。正切函数仅在(-π/2,π/2)范围内是一个满射函数,超出这个范围,正切函数会将多个不同的自变量映射到同一个值上。因此,仅凭正切函数的值无法直接确定相位自变量的准确值。这种情况下,需要采取其他方法来解决相位缠绕问题,以确保正确地恢复目标信号的相位信息。相位解缠绕的主要目的是将这些不连续的相位值进行平滑处理,使得相位值在整个范围内连续递增或递减 。
相位计算的反正切值函数(复数域)的主值位于区间(−π,π]或[0,2π) 之间。通常情况下由于反正切操作,一般被限制在-π到π之间,导致回波相位的测量值可能与实际的相位不同,当实际相位中的某些值超过该区间时,会出现相位缠绕现象,即超过这个范围的值会被加上或者减去n个2π,从而落在这个区间内,所以相位的实际值和测量值之间相差2π的n倍(是一个整数)。要从相位的测量值中恢复出实际值,就需要确定n的大小。本节通过一种比较相邻采样点的相位测量值的方法来进行相位解缠绕。假设相邻两个采样点的真实相位之间的最大差值小于π,则相位解缠绕的公式如下:
通过计算前后两帧的相位差值,认为与前一帧的相位差值大于 π 的点为相位跳变点,再对其进行 ±2π 的修正。随后,对连续展开相位进行差分,可以消除相位基线漂移,抑制呼吸信号及其谐波,从而达到增强心跳信号的目的。
相位基线漂移是指在实际监测过程中,呼吸或心跳信号的相位基线随时间发生了偏离和变化,不再保持稳定。
信号分离及生命体征预估
在对相位差分信号进行分离之前,需要去除环境噪声对信号的影响,同时尽可能保留信号的整体特征和趋势,选用滑动平均滤波算法来去除由于测试环境引起的脉冲噪声。为了不改变信号的原始变化规律,通过不断的调试,最终选取 0.25 s 的滑动窗口。
为了降低计算成本,减少程序运行时间,本文选用 IIR 带通滤波器对呼吸和心跳信号进行分离。
对由带通滤波器分离得到的呼吸信号进行快 速傅里叶变换即可得到呼吸频率f_RR,再通过等式将其转换为呼吸速率 RR。同理,对心跳信号进行快速傅里叶变换即可得到心跳频率f_HR,再通过等式将其转换为心跳速率 HR。
仿真结果及其分析
从图中可以看到,心跳波波形有一定的波动,但整体上呈现出周期性的规律,说明心跳较为稳定。
办公桌前,胸部正对采集设备0.8m距离
从距离维 FFT 图中可以得出结论:在 0.8 米左右存在一个明显的峰值,这个峰值很可能对应于人体反射的雷达信号,且该信号具有较高的强度。同时,环境中的其他物体以及噪声等也可能对雷达信号产生反射,在图中也有具体的体现。
总结与展望
1、可以在多人场景下进行相应的生命体征监测;
2、可以继续延伸,室内人员检测与跟踪,人体运动检测都是下一步可以继续深入的部分。
最后的最后,有需要源码uu可以单独联系我的哟!!!