机器学习中的神经网络算法一直以来都备受研究者们的关注,而ZF算法是其中一种深度学习算法,被广泛应用于图像识别、语音识别等领域,本文将介绍如何通过matlab进行ML-ZF算法的仿真实现。
首先需要加载数据集,这里以MNIST手写数字数据集为例。代码如下:
load mnist.mat; %加载数据集
train_data = double(train_data')/255; %转置,归一化
train_label = double(train_label');
test_data = double(test_data')/255;
test_label = double(test_label');
接下来是模型的构建,采用6层卷积神经网络,具体结构如下:
layers = [ ...
imageInputLayer([28 28 1])
convolution2dLayer(5,20,'Padding',2)
reluLayer
maxPooling2dLayer(2,'Stride',2)
convolution2dLayer(