Retinex算法是一种经典的图像增强技术,用于去除图像中的雾气。Retinex算法的核心思想是通过对图像的亮度信息进行增强来消除雾气的影响。
它基于以下假设:图像的亮度由场景的反射和光照成分组成。在存在雾气的情况下,光照成分会被散射和吸收,导致图像变得模糊和低对比度。Retinex算法通过估计和补偿这些光照成分的损失,从而使图像恢复到原始的亮度和对比度。
下面是使用Matlab实现基于Retinex算法的图像去雾的代码:
function output_image = retinex_dehaze(input_image, sigma)
% 将输入图像转换为双精度类型
input_image = im2double(input_image);
% 计算图像的亮度分量
luminance = log(1 + mean(input_image, 3));
% 对亮度分量进行高斯滤波
luminance_filtered = imgaussfilt(luminance, sigma);
% 计算亮度比例
ratio = luminance ./ (luminance_filtered + eps);
% 对图像的每个通道进行亮度补偿
output_image = bsxfun(@times, input_image, ratio);
% 对补偿后的图像进行限制,确保像素值在0到1之间
output_