什么是多模态谱聚类(MMSC)

  • 多模态谱聚类(Multi-modal Spectral Clustering, MMSC)是一种处理具有多个表示或视图的数据集的聚类方法。它旨在通过融合不同模态或视图下的互补信息来提高聚类性能。

  • MMSC的核心在于构建一个综合所有视图信息的拉普拉斯矩阵,并在此基础上执行谱聚类,以得到最终的聚类结果。

  • 具体来说,MMSC通过最小化每个视图的谱聚类误差和最小化多模态聚类的标签矩阵与每个视图的标签矩阵之间的距离来优化目标函数。

具体例子与步骤

例子场景:考虑一个图像数据集,其中每个图像有三个不同的特征表示或视图:颜色信息、纹理信息和形状信息。我们的目标是将这些图像根据它们的内容相似性进行聚类。

涉及的公式:
MMSC的目标函数可以表示为:
min ⁡ G ≥ 0 , G ⊤ G = I ∑ i = 1 m tr [ ( G ( i ) ) ⊤ L ( i ) G ( i ) ] + α tr [ ( G − G ( i ) ) ⊤ ( G − G ( i ) ) ] \min_{G\geq0, G^\top G=I} \sum_{i=1}^m \text{tr}[(G^{(i)})^\top L^{(i)} G^{(i)}] + \alpha \text{tr}[(G - G^{(i)})^\top(G - G^{(i)})] G0,GG=Imini=1mtr[(G(i))L(i)G(i)]+αtr[(GG(i))(GG(i))]
其中, G 是最终的多视图聚类标签矩阵, G ( i ) 是针对第 i 个视图的聚类标签矩阵, L ( i ) 是第 i 个视图的拉普拉斯矩阵, α 是一个惩罚系数,用于控制各视图间的一致性。 其中, G 是最终的多视图聚类标签矩阵, G^{(i)} 是针对第 i 个视图的聚类标签矩阵, L^{(i)} 是第 i 个视图的拉普拉斯矩阵, \alpha 是一个惩罚系数,用于控制各视图间的一致性。 其中,G是最终的多视图聚类标签矩阵,G(i)是针对第i个视图的聚类标签矩阵,L(i)是第i个视图的拉普拉斯矩阵,α是一个惩罚系数,用于控制各视图间的一致性。

计算步骤:

  1. 数据预处理: 对每个视图的数据进行标准化处理,确保不同特征尺度的公平比较。

  2. 构建相似矩阵与拉普拉斯矩阵:

    • 对于每个视图 v ,计算相似矩阵 S ( v ) ,通常基于样本间距离或相似度。 对于每个视图 v ,计算相似矩阵 S^{(v)} ,通常基于样本间距离或相似度。 对于每个视图v,计算相似矩阵S(v),通常基于样本间距离或相似度。
    • 计算归一化拉普拉斯矩阵 L ( v ) = D ( v ) − S ( v ) ,其中 D ( v ) 是 S ( v ) 的对角度矩阵,用于度量每个样本的度。 计算归一化拉普拉斯矩阵 L^{(v)} = D^{(v)} - S^{(v)} ,其中 D^{(v)} 是 S^{(v)} 的对角度矩阵,用于度量每个样本的度。 计算归一化拉普拉斯矩阵L(v)=D(v)S(v),其中D(v)S(v)的对角度矩阵,用于度量每个样本的度。
  3. 优化目标函数:

    • 根据目标函数,通过交替优化方法求解 G ( i ) ,首先固定 G ,求解 G ( i ) ,再固定 G ( i ) 更新 G 。 根据目标函数,通过交替优化方法求解 G^{(i)} ,首先固定 G ,求解 G^{(i)} ,再固定 G^{(i)} 更新 G 。 根据目标函数,通过交替优化方法求解G(i),首先固定G,求解G(i),再固定G(i)更新G
    • 使用公式 G ( i ) = α ( L ( i ) + α I ) − 1 G 来迭代更新 G ( i ) 。 使用公式 G^{(i)} = \alpha(L^{(i)} + \alpha I)^{-1}G 来迭代更新 G^{(i)} 。 使用公式G(i)=α(L(i)+αI)1G来迭代更新G(i)
  4. 求解最终聚类标签矩阵:

    • 将上述更新步骤重复执行,直至达到某种收敛准则,比如 ( G ) 的变化小于某个阈值。
    • 最终的 ( G ) 表示所有视图数据的综合聚类标签。
  5. 聚类:

    • 将优化后的 ( G ) 应用于原始数据,根据其行向量分配每个样本到相应的聚类。

在这个过程中,MMSC通过融合不同视图的信息,可以有效应对单一视图中可能存在的噪声和不完整性,从而提升聚类的准确性和鲁棒性。

例子

数据集描述

  • 模态1(Text):包含10篇文章的关键词频率向量,每篇文章用一个100维的向量表示。
  • 模态2(Image):每篇文章对应一张图片,通过图像处理技术转化为100维的特征向量。

目标

将这10篇文章根据它们的文本内容图像特征分成3个主题类别。

步骤1:数据预处理

  • 对每个模态的数据进行标准化处理,确保所有特征在相同尺度上比较。

步骤2:构建相似度矩阵

对于每个模态 v ,构建相似度矩阵 S ( v ) ,使用余弦相似度衡量样本间的相似性。 对于每个模态 v,构建相似度矩阵 S^{(v)},使用余弦相似度衡量样本间的相似性。 对于每个模态v,构建相似度矩阵S(v),使用余弦相似度衡量样本间的相似性。

S i j ( v ) = x i ( v ) ⋅ x j ( v ) ∥ x i ( v ) ∥ 2 ∥ x j ( v ) ∥ 2 S_{ij}^{(v)} = \frac{\mathbf{x}_i^{(v)} \cdot \mathbf{x}_j^{(v)}}{\|\mathbf{x}_i^{(v)}\|_2 \|\mathbf{x}_j^{(v)}\|_2} Sij(v)=xi(v)2xj(v)2xi(v)xj(v)
其中, x i ( v ) 表示模态 v 下第 i 个样本的特征向量。 其中,\mathbf{x}_i^{(v)} 表示模态 v 下第 i 个样本的特征向量。 其中,xi(v)表示模态v下第i个样本的特征向量。

步骤3:构造拉普拉斯矩阵

计算每个模态的归一化拉普拉斯矩阵 L ( v ) 。 计算每个模态的归一化拉普拉斯矩阵 L^{(v)}。 计算每个模态的归一化拉普拉斯矩阵L(v)

D ( v ) = diag ( S ( v ) 1 ) D^{(v)} = \text{diag}(S^{(v)} \mathbf{1}) D(v)=diag(S(v)1)
L ( v ) = D ( v ) − S ( v ) L^{(v)} = D^{(v)} - S^{(v)} L(v)=D(v)S(v)
其中, 1 是一个全 1 向量, D ( v ) 是 S ( v ) 的对角度矩阵。 其中,\mathbf{1} 是一个全1向量,D^{(v)} 是 S^{(v)} 的对角度矩阵。 其中,1是一个全1向量,D(v)S(v)的对角度矩阵。

步骤4:MMSC目标函数

定义MMSC的优化目标,最小化各模态的谱聚类误差和模态间标签矩阵的一致性误差。

min ⁡ G ∑ v = 1 2 Tr ( G ⊤ L ( v ) G ) + α ∑ v = 1 2 Tr ( ( G − G ( v ) ) ⊤ ( G − G ( v ) ) ) \min_{G} \sum_{v=1}^2 \text{Tr}(G^\top L^{(v)} G) + \alpha \sum_{v=1}^2 \text{Tr}((G - G^{(v)})^\top (G - G^{(v)})) Gminv=12Tr(GL(v)G)+αv=12Tr((GG(v))(GG(v)))
其中, G 是最终的聚类标签矩阵, G ( v ) 是基于单模态 v 的聚类结果, α 是一个调节模态间一致性和模态内聚类质量的权重参数。 其中,G 是最终的聚类标签矩阵,G^{(v)} 是基于单模态 v 的聚类结果,\alpha是一个调节模态间一致性和模态内聚类质量的权重参数。 其中,G是最终的聚类标签矩阵,G(v)是基于单模态v的聚类结果,α是一个调节模态间一致性和模态内聚类质量的权重参数。

步骤5:求解G

使用迭代算法求解 G ,一种方法是交替优化 G ( v ) 和 G 。 使用迭代算法求解 G,一种方法是交替优化 G^{(v)} 和 G。 使用迭代算法求解G,一种方法是交替优化G(v)G

  • 固定 G ,求解每个模态的 G ( v ) 。 固定 G,求解每个模态的 G^{(v)}。 固定G,求解每个模态的G(v)
    G ( v ) = ( α I + L ( v ) ) − 1 G G^{(v)} = (\alpha I + L^{(v)})^{-1}G G(v)=(αI+L(v))1G

  • 固定 G ( v ) ,更新 G 。这个步骤可能涉及迭代求解或使用其他优化技术。 固定 G^{(v)},更新 G。这个步骤可能涉及迭代求解或使用其他优化技术。 固定G(v),更新G。这个步骤可能涉及迭代求解或使用其他优化技术。

步骤6:聚类

  • 当 (G) 收敛或达到预定迭代次数后,使用 (G) 对每个样本分配聚类标签。

结果评估

  • 使用外部指标(如ARI、NMI)评估聚类结果的质量。
import numpy as np
from sklearn.decomposition import PCA
from sklearn.cluster import KMeans
from sklearn.metrics.pairwise import cosine_similarity
from scipy.sparse import diags, eye
from scipy.sparse.linalg import eigsh

# 假设数据
# 模态1(文本特征)和模态2(图像特征)
modality1_data = np.random.rand(10, 100)  # 10个样本,每个样本100维特征
modality2_data = np.random.rand(10, 128)  # 同理,10个样本,每个样本128维特征

# 数据预处理:标准化
modality1_data = (modality1_data - modality1_data.mean(axis=0)) / modality1_data.std(axis=0)
modality2_data = (modality2_data - modality2_data.mean(axis=0)) / modality2_data.std(axis=0)

# 构建相似度矩阵
def build_similarity_matrix(data):
    similarity_matrix = cosine_similarity(data)
    return similarity_matrix

similarity_matrix1 = build_similarity_matrix(modality1_data)
similarity_matrix2 = build_similarity_matrix(modality2_data)

# 构造拉普拉斯矩阵
def laplacian_matrix(similarity_matrix):
    degree_matrix = diags(np.sum(similarity_matrix, axis=1))
    return degree_matrix - similarity_matrix

laplacian1 = laplacian_matrix(similarity_matrix1)
laplacian2 = laplacian_matrix(similarity_matrix2)

# 简化示例:交替优化寻找聚类标签(此处使用PCA降维和K-means作为代替)
# 实际MMSC涉及更复杂的优化过程,这里仅示意

# 假设初始聚类中心由第一个模态的KMeans得到
k = 3  # 假设聚类数为3
initial_labels = KMeans(n_clusters=k).fit_predict(modality1_data)
G = np.eye(k)[initial_labels]

# 交替优化简化步骤(理想情况下应迭代优化G和Gv)
# 这里省略了实际的交替优化步骤,直接展示如何利用G进行后续处理
# 实际操作中,您需要设计循环来交替更新G和Gv,并且可能需要梯度下降或其他优化策略

# 假设已得到最终的G,使用G进行聚类
# 注意,真实实现中需要根据G进行具体操作,这里直接使用KMeans展示
final_clusters = KMeans(n_clusters=k).fit_predict(np.hstack((modality1_data, modality2_data)))

print("Final cluster labels:", final_clusters)
Final cluster labels: [0 1 2 1 2 0 1 0 0 0]
  • 12
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

不易撞的网名

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值