论文调研-多模态聚类

一、文献总述

(一)文献1:Deep Incomplete Multiview Clustering via Local and Global Pseudo-Label Propagation 通过局部和全局伪标签传播的深度不完全多视图聚类

1、问题当前进展

在多视图聚类中,数据的不完整性是一个主要挑战,因为它可能导致聚类结果的偏差和性能下降。为应对这一问题,研究者开发了多种方法,特别是基于深度学习的方法,这些方法通过深度神经网络的高级特征表示能力来提升聚类效果。尽管这些方法在一定程度上有效,但它们通常依赖于样本或亲和性的线索,而缺乏对标签信息的利用,并且在处理不完整数据时效率不高。

2、创新/贡献

提出了一种新颖的深度不完全多视图聚类方法,通过局部和全局伪标签传播来提升聚类性能。

3、引用信息

Feng C, Li A, Xu H, et al. Deep Incomplete Multiview Clustering via Local and Global Pseudo-Label Propagation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024.

(二)文献2:S2MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering 一个简单而高效可扩展的多视图张量聚类

1、问题当前进展

当前的多视图聚类(MVC)方法主要基于自表示学习或图学习,目的是找到共识嵌入特征。这些方法需要更新大量的会员图来构建亲和矩阵,然后输入到谱聚类算法中,这导致了存储和计算需求随着数据规模的增长而急剧增加。为了解决大规模数据的问题,提出了基于锚点的可扩展MVC方法,但这些方法仍然依赖于锚点图或投影矩阵之间的全局相关性。

2、创新/贡献

与现有基于锚点的方法不同,S2MVTC直接学习嵌入特征的视图间和视图内的相关性;利用新定义的TLFA算子,S2MVTC在不同视图中实现了嵌入特征的平滑表示。

3、引用信息

Long Z, Wang Q, Ren Y, et al. S2MVTC: a Simple yet Efficient Scalable Multi-View Tensor Clustering[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024: 26213-26222.

(三)文献3:Multi-view and Multi-order Graph Clustering via Constrained L1, 2-norm 多视图多阶图聚类算法基于约束 L1,2-norm

1、问题当前进展

基于图的多视图聚类算法通过对不同视图的一阶图进行一致图学习,获得了较好的聚类性能。然而,一阶图通常是稀疏的,缺乏必要的必须链接信息,这导致了次优共识图。虽然高阶图可以解决这个问题,但涉及选择固定数量的高阶图并进行融合的两步策略可能导致信息丢失或冗余,从而限制了对高阶信息的探索。

2、创新/贡献

提出了基于约束的L1,2-范数(MoMvGC)的多视图和多阶图聚类方法,减轻了图稀疏性对多视图聚类的影响。通过创新地设计约束的L1,2-范数,该模型巧妙地将多阶图的选择和相应的权值学习整合到一个统一的框架中。此外,MoMvGC不仅支持多阶图的稀疏选择,还支持视图的同时选择。然后,作者设计了一种高效的替代优化算法来解决MoMvGC中的优化问题。

3、引用信息

**n H, Hao Z, Sun Z, et al. Multi-view and Multi-order Graph Clustering via Constrained l1, 2-norm[J]. Information Fusion, 2024, 111: 102483.

(四)文献4:Multiview Tensor Spectral Clustering via Co-regularization 基于协同正则化的多视图张量谱聚类

1、问题当前进展

最近的研究提出了不同的策略来整合来自不同视图的互补相关性&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值