一、什么是脉冲信号
- 脉冲幅度Um:脉冲波从底部到顶部之间数值
- 脉冲宽度T(一般指Tpa):是在信号穿过信号幅度一半的两点(“50%点”)之间测量的时间
- Tp:脉冲前、后沿分别等于90%Um时的时间间隔
- Tpa:脉冲前、后沿分别等于50%Um时的时间间隔
- Tpb:脉冲前、后沿分别等于10%Um时的时间间隔
- 脉冲周期T:两个相邻脉冲之间的时间间隔
- 脉冲频率f:脉冲的重复频率 f=1/T
- 脉冲上升时间tr:脉冲波从10%Um上升到90%Um所经过的时间
- 脉冲下降时间tf:脉冲波从90%Um下降到10%Um所经过的时间
- 过冲Overshoot
- 上过冲:脉冲上升边沿超过顶部值以上所呈现的突出部分电压(最高电压)
- 下过冲:脉冲下降边沿超过底部值以下所呈现的突出部分电压(最低电压)
- 回冲Ringback
- 上回冲:信号在达到上过冲电压后回落到顶部值以下的电压
- 下回冲:信号在达到下过冲电压后回弹到底部值以上的电压
- 振铃Ringing:信号跳变之后的振荡
- 边沿非单调Non-monotonic:信号在上升或下降沿出现不单调的行为,如回钩、台阶、振荡、跳跃等
二、时域和频域
-
时域
- 时域(时间域-time domain)——是指信号在时间上的变化情况。在时域中,信号的数值随时间变化,可以表示为一个时间序列。
- 自变量是时间,即横轴是时间,纵轴是信号的变化。
- 自变量是时间,即横轴是时间,纵轴是信号的变化。
- 为什么要分析时域
- 时域分析是信号处理中的一种重要方法,它主要用于研究信号在时间上的变化规律和特性。通过对信号在时域上的分析,我们可以获取信号的时序信息,了解信号的波形、幅度、频率等特征,从而更好地理解和处理信号。具体来说,时域分析可以帮助我们完成以下几个方面的任务:
- 时域波形展示:通过绘制信号的时域波形图,可以直观地观察信号的变化趋势和周期性,从而对信号有一个整体的了解。
- 时域特征提取:通过对信号进行时域分析,可以提取出一些重要的时域特征,如峰值、均值、方差等,这些特征可以用于信号分类、识别和检测等应用。
- 时域滤波:时域分析可以帮助我们设计和应用各种滤波器,如低通滤波器、高通滤波器等,用于去除信号中的噪声或者选择感兴趣的频率成分。
- 时域相关性分析:通过计算信号之间的相关性,可以研究信号之间的相互关系和相似性,从而在信号处理、通信等领域中得到广泛应用。
- 时域分析是信号处理中的一种重要方法,它主要用于研究信号在时间上的变化规律和特性。通过对信号在时域上的分析,我们可以获取信号的时序信息,了解信号的波形、幅度、频率等特征,从而更好地理解和处理信号。具体来说,时域分析可以帮助我们完成以下几个方面的任务:
- 常见的分析时域的设备
- 示波器(Oscilloscope):示波器是一种用于显示电压随时间变化的设备,可以观察信号的波形、幅度、频率等特征。示波器通常具有高带宽和高采样率,可以捕捉到高频信号的细节。
- 信号发生器(Signal Generator):信号发生器可以产生各种不同频率、幅度和波形的信号,用于测试和调试电子设备。它可以生成正弦波、方波、脉冲等不同类型的信号。
- 频谱分析仪(Spectrum Analyzer):频谱分析仪用于测量信号在频域上的特性,可以显示信号的频谱分布情况。它可以帮助分析信号的频率成分、谐波情况以及噪声水平等。
- 逻辑分析仪(Logic Analyzer):逻辑分析仪主要用于对数字信号进行分析,可以捕捉和显示多个信号线上的数字信号波形,帮助分析和调试数字电路。
- 功率分析仪(Power Analyzer):功率分析仪用于测量电力系统中的电压、电流、功率等参数,可以分析电力质量、能效等问题。
- 时域(时间域-time domain)——是指信号在时间上的变化情况。在时域中,信号的数值随时间变化,可以表示为一个时间序列。
-
频域
- 频域(Frequency domain):是指信号在频率上的变化情况。在频域中,信号可以表示为不同频率的正弦波的叠加。
- 自变量是频率,即横轴是频率,纵轴是该频率信号的幅度。
- 自变量是频率,即横轴是频率,纵轴是该频率信号的幅度。
- 为什么要分析频域
- 频域分析是信号处理中的一种重要方法,它可以将信号从时域转换到频域,从而更好地理解信号的频率特性和频谱分布。频域分析可以提供以下几个方面的信息:
- 频率成分:频域分析可以将信号分解为不同频率的成分,通过观察频谱可以了解信号中包含的各个频率成分的强度和相对比例。这对于理解信号的特性、检测频率成分的变化以及滤波等应用非常有用。
- 频谱特性:频域分析可以揭示信号的频谱特性,包括频率分布、频带宽度、频率间隔等。通过观察频谱可以判断信号是否存在周期性、是否存在噪声、是否存在干扰等。
- 频域滤波:频域分析可以通过滤波器对信号进行滤波操作。在频域中,可以通过选择性地增强或抑制某些频率成分来实现滤波效果,例如去除噪声、降低干扰等。
- 信号处理:频域分析在很多信号处理任务中都有广泛应用,例如音频处理、图像处理、通信系统等。通过频域分析,可以对信号进行压缩、编码、解码等操作,提高信号处理的效率和质量。
- 频域分析是信号处理中的一种重要方法,它可以将信号从时域转换到频域,从而更好地理解信号的频率特性和频谱分布。频域分析可以提供以下几个方面的信息:
- 常见的分析频域的设备
- 频谱分析仪:频谱分析仪是一种广泛应用于电子、通信、音频等领域的设备,它可以将时域信号转换为频域信号,并以图形或数字形式显示出来。频谱分析仪可以帮助用户观察信号的频率分布、幅度变化等特征,常见的类型有实时频谱分析仪和矢量信号分析仪等。
- 频谱仪:频谱仪是一种专门用于测量和显示信号频谱的设备。它可以将输入信号进行快速傅里叶变换(FFT)或其他频谱分析算法,得到信号的频谱信息,并以图形或数字形式显示出来。频谱仪广泛应用于无线通信、音频、雷达等领域。
- 网络分析仪:网络分析仪是一种用于测量和分析电路或系统中信号传输特性的设备。它可以通过测量输入和输出信号的幅度和相位,来分析信号在不同频率下的传输特性。网络分析仪常用于射频和微波领域,用于测试和优化天线、滤波器、放大器等器件和系统。
- 频率计:频率计是一种用于测量信号频率的设备。它可以通过计数信号周期数来确定信号的频率,并以数字形式显示出来。频率计广泛应用于科学研究、通信、无线电测量等领域。
- 频域(Frequency domain):是指信号在频率上的变化情况。在频域中,信号可以表示为不同频率的正弦波的叠加。
-
时域与频域的关系
- 时域分析的函数是参数是t,也就是y=f(t);频域分析时,参数是w,也就是y=F(w),两者之间可以互相转化。
- 将时域和频域放在一个三维的坐标系中,如下图所示:
-
时域和频域的相互转换
- 时域到频域的转换可以通过傅里叶变换来实现。傅里叶变换将一个时域信号分解成一系列不同频率的正弦和余弦函数的叠加,得到信号在频域上的表示。傅里叶变换的公式为:
- F(ω) = ∫[−∞,+∞] f(t) * e^(-jωt) dt
- 其中,F(ω)表示信号在频域上的表示,f(t)表示信号在时域上的表示,ω表示频率,e^(-jωt)是复指数函数。
- 频域到时域的转换可以通过傅里叶逆变换来实现。傅里叶逆变换将一个频域信号重新合成为时域信号。傅里叶逆变换的公式为:
- f(t) = ∫[−∞,+∞] F(ω) * e^(jωt) dω
- 其中,f(t)表示信号在时域上的表示,F(ω)表示信号在频域上的表示,e^(jωt)是复指数函数。
- 时域到频域的转换可以通过傅里叶变换来实现。傅里叶变换将一个时域信号分解成一系列不同频率的正弦和余弦函数的叠加,得到信号在频域上的表示。傅里叶变换的公式为:
-
时域和频域分析的优势及总结
- 时域分析是指对信号在时间上的变化进行分析。通过观察信号在时间轴上的波形和幅度变化,可以获得以下优势:
- 直观性:时域分析可以直接观察信号的波形,对信号的特征有直观的认识。
- 时序信息:时域分析可以提供信号的时序信息,包括信号的起始时间、持续时间、周期性等。
- 时域滤波:时域分析可以通过滤波器对信号进行时域滤波,去除噪声或者改变信号的频率特性。
- 频域分析是指对信号在频率上的特性进行分析。通过将信号转换到频率域,可以获得以下优势:
- 频谱信息:频域分析可以提供信号的频谱信息,包括信号的频率成分、频率强度等。
- 频率滤波:频域分析可以通过滤波器对信号进行频率滤波,去除特定频率的干扰或者增强感兴趣的频率成分。
- 频域变换:频域分析可以通过傅里叶变换等方法将信号从时域转换到频域,方便进行进一步的处理和分析。
- 综上所述,时域分析适用于观察信号的波形和时序信息,而频域分析适用于观察信号的频谱信息和进行频率滤波。根据具体的需求和问题,选择合适的分析方法可以更好地理解和处理信号。
- 时域分析是指对信号在时间上的变化进行分析。通过观察信号在时间轴上的波形和幅度变化,可以获得以下优势:
-
三、Line Spectrums(线谱)
- 从信号理论中,我们知道一系列的正弦波可以用来重建一个循环的脉冲流。事实上,傅里叶分析可以用来找到每个频率的振幅和相位,并确定需要多少个频率来重建脉冲到所需的精度水平。
- 例如,一个10ns的脉冲流的基频是100 MHz。二次谐波(如果存在)是基频(200 MHz)的两倍,第三次谐波是300 MHz,以此类推。一个具有零上升时间边的10ns方波(具有相同高低时间的脉冲)的基频为100 MHz,并且只有奇数谐波。基线的振幅被设置为1,谐波也被相应地缩放。这在频域中用一个离散的线谱来表示,如下图所示:
- 下图显示了如何通过添加一系列正弦波来重建一个100-MHz的方波。
- a图中显示了当只有100MHz的基频存在时脉冲的波形。从(1.1)开始的周期为10 ns,但信号是正弦波而不是脉冲。
- b图中显示了一个脉冲的开始,只有三次谐波被添加的时候。从线谱中我们知道第三次谐波是一个300MHz的正弦波,其振幅为基波的三分之一。
- c图中显示了五次谐波被添加到基本谐波和第三次谐波时的改进。波形显然是一个脉冲,但在有很大一部分是平坦的纹波。
- d图中显示了在之前的结果中加入第七次谐波时的进一步改进。虽然纹波仍然存在,但它的频率更高,振幅更小。随着更多的奇数谐波的加入,这个改进过程继续持续到无穷大。
- 我们不是通过添加正弦波来产生脉冲,而是通过观察去除谐波时的效果来获得更深层次的理解。例如,如果d图中所示的脉冲通过一个滤波器来去除高于第三次谐波的所有频率,则得到b图中所示的结果。
- 这表明,通过改变频域的谐波,脉冲在时域发生失真。