DeepSeek最近很火,本文分享一些使用DeepSeek的技巧,帮助用户更好地利用这一工具提升内容创作的效率和质量
1. 清晰具体,避免模糊
-
错误示范:
“帮我写一篇作文。”正确示范:
“我需要一篇关于‘人工智能对社会影响’的议论文,500字左右,适合高中生水平,要求有正反观点对比。” -
关键点:
明确 主题、目标、限制条件(如字数、格式、用途),让AI精准定位你的需求。
2. 提供背景信息
-
错误示范:
“代码报错了,怎么办?”正确示范:
“我在用Python的Pandas处理数据时,遇到错误KeyError: 'column_name'
,数据是从CSV文件读取的,相关代码如下:df['column_name'] = ...
。” -
关键点:
说明 场景、工具、具体问题,尤其技术类问题需附上代码、错误提示或操作步骤。
3. 分步提问,拆解复杂问题
-
错误示范:
“如何开一家成功的咖啡馆?”正确示范:
“第一步:咖啡馆选址需要考虑哪些因素?
第二步:如何计算初期投资成本?
第三步:有哪些有效的营销策略?” -
关键点:
将大问题分解为小步骤,避免信息过载,便于针对性回答。
4. 明确需求类型
-
需要解释概念:
“请用简单语言解释区块链的工作原理。” -
需要步骤指南:
“如何用Photoshop将图片背景透明化?请分步骤说明。” -
需要对比分析:
“Python和Java在数据处理领域的优缺点是什么?” -
需要创意生成:
“为宠物用品店设计10个有吸引力的促销活动主题。” -
关键点:
明确回答类型(解释、步骤、对比、创意等),帮助AI选择输出模式。
5. 避免歧义,限定范围
-
错误示范:
“最新进展是什么?”正确示范:
“2025年新能源电池领域有哪些技术突破?请列举三项并简要说明。” -
关键点:
限定 领域、时间、数量 等,缩小答案范围。
6. 提供示例或模板
-
错误示范:
“写一封邮件。”正确示范:
“我需要一封英文商务邮件,内容是向客户延迟交货致歉。需包含:致歉、原因(供应链问题)、新交货日期、补偿措施。参考格式:
Dear [Name],
We sincerely apologize for…
…” -
关键点:
示例能帮助AI快速理解你的预期格式或风格。
7. 主动纠正和追问
- 如果回答不准确,可补充信息或修正:
“上一条回答中的‘量子纠缠’解释不够通俗,能否用比喻重新说明?”
“关于咖啡馆选址,能否补充二三线城市的特殊情况?”
8. 检查问题的逻辑
- 避免自相矛盾或过于宽泛:
错误:“如何不运动不节食快速减肥?”(可能违反科学常识)
修正:“有哪些科学验证的健康减肥方法,适合每天只有30分钟空闲时间的人?”
总结公式
精准提问 = 具体主题 + 背景信息 + 明确需求 + 限定条件 + 示例参考
通过练习这些方法,你可以更高效地与AI互动,获得更贴合需求的答案。如果仍有偏差,随时补充信息或调整提问方式即可!