关联系统-高精地图HD MAP

什么是高精地图?

在这里插入图片描述
高精地图(High Definition Map),也被称为高分辨率地图,一般简称为HD MAP,与我们平时使用的导航地图(SD MAP)略有不同,SD MAP为道路级导航,其重点表达道路拓扑关系,告诉用户应该走哪条路;而HD MAP可以理解为车道级导航,其将道路上的静态元素全部告诉给使用者,包括:道路【道路类型、道路组成、曲率、坡度等等】、交通【交通信号灯、交通标志、地面标识、车道线等等】、天气【雨、雪、雾等等】、光照【白天、黑夜等等】,他会将所有的静态元素都告诉给使用者,但是其实这些元素对于驾驶员来讲基本都不需要,驾驶员只需要知道前面走哪条路就可以,其它的驾驶员自己就可以看到,所以HD MAP主要服务对象是ADAS系统,主要是给系统看的,帮助系统更好感知、定位、决策、规划、控制,提升系统的性能;目前各大图商都推出一种介于SD MAP和HD MAP之间的ADAS MAP,这种地图简化了HD MAP输出的信息,使得地图更加精简,同时在车机中控屏上一般都会做地图的HMI渲染,用户可以清楚得看到地图中所能提供得静态元素信息,虽然并没什么卵用。

高精地图的制作

其基本原理是:数采车配备定位真值系统,通过激光雷达和摄像头对周边静态环境进行SLAM建图 ,之后通过将处理好的原始数据放到感知模型中,进行目标识别和分类,最后将原始数据转化为语义信息,之后按照一定的格式标准进行编译和发布

备注:只有具备甲/乙级测绘资质的公司才能进行地图采集,目前ADAS这块的图商主要有百度、高德、四维图新、MobilEye、TomTom、Here

在这里插入图片描述

数采设备

目前高精度地图主流的采集设备是激光雷达、摄像头、GNSS+IMU+轮测距仪,其中IMU+GNSS+轮测距仪用于数采车的绝对真值定位,激光雷达和摄像头主要用于周围静态环境信息感知;关于定位,由于高精地图的精度要求比较高,通常是厘米级,有时候单靠IMU+GNSS+轮测距仪是不够的,需要一些其它定位算法【SLAM定位、RTK服务】去辅助

采集数据内容

数采车采集的数据主要是静态元素,有道路信息、车道信息、道路标记信息、基本对象信息:
在这里插入图片描述

数采方法(SLAM同步定位与地图构建)

SLAM(Simultaneous Localization And Mapping),中文为同步定位与地图构建,其可以在运动过程中根据观测到的环境特征定位自身位置和姿态,再根据自身位置构建周围环境的地图,从而达到同时定位和地图构建的目的。在高精地图制作过程中,其根据GNSS+IMU+轮测距仪+RTK算出自身绝对位置,再根据SLAM局部定位周围环境,例如:SLAM感知自车前方20m有红绿灯,再结合自身绝对位置就知道红绿灯的绝对位置了,以此类推,就可以将道路上其它元素的绝对位置也计算出来,从而完成地图的构建;

目前SLAM技术有两种,一种是激光SLAM,一种是视觉SLAM;
——激光SLAM:可以直接根据激光点云数据计算目标的距离
——视觉SLAM:需要通过分析多帧图像对同一个目标的感知数据来计算目标的距离,一般都是使用双目,通过使用外参不同的两个摄像头同时对同一个目标感知来达到测距的目的

数据处理

数采车采集回来的都是原始数据,激光点云和视觉图像信息,这些数据是比较杂乱的,需要经过处理才能使用

激光数据处理

激光雷达获取的原始数据集以激光点云文件形式进行存储,通常,激光点云文件中只包含物体表面的离散点集坐标和反射强度I,但此点集数据通常包含噪声,具有散乱、重复及量大的特点,需要对其进行整理、分类和清洗,得到不包含任何语义信息和注释的初始地图模板。
在这里插入图片描述

图像数据处理

图像数据处理主要是将图像处理成便于感知神经网络处理的数据,其中包括图像的标注、分割、边缘检测、图像像素的细化、图像特征的提取以及对特征参数的提取等
在这里插入图片描述

目标识别与分类

将处理好的激光点云数据和图像数据输入到对应的感知神经网络中,即可完成目标的识别与分类
在这里插入图片描述

高精地图偏转插件

高精地图在发布商用之前必须经过国家测绘局的加密偏转处理,将基于地心坐标系(WGS-48)的真实坐标通过偏转插件转化为火星坐标系(GCJ-02)下的虚假坐标,防止在使用过程中被不法分子获取到真实定位;其中偏转插件的申请流程如下:
1.申请书提交:提交申请的资料通常包含申请书,测绘联编方案,测试计划等等。准备提交后,就等待审核。
2.现场联编:国家工作人员将源码和加密插件进行联合编制
3.针对商用的地图数据,可以分批次分区域的进行加偏验证,所有的区域验证偏转通过后,就可以申请全国地图的商用了

可见商用地图里的坐标都是经过偏转加密后的坐标,并不是真实的,这也是为何高精定位也要申请偏转插件的原因,偏转的高精地图+偏转的高精定位就能获取正确的地图信息;在高精定位申请偏转插件时,可以让图商帮忙,毕竟它在偏转插件申请这块是专业的。

至于偏转插件到底是啥,笔者也没见过代码,不过大概率是个C语言的库文件,联合编译时与源码一同编译得到可执行文件

地图编译及格式规范

当偏转插件申请并验证没问题后,将其与源码进行编译,按照某种格式规范生成可供自动驾驶系统使用的高精地图文件。目前格式规范主要有两种:
——NDS数据格式:NDS(NavigationData Standard),是由德国宝马、大众等车厂联合导航电子地图提供商提出的一种导航电子地图存储标准,是一种基于嵌入式数据库的导航电子地图数据存储标准
——OpenDRIVE数据格式:‌OpenDRIVE格式‌是一种用于描述静态道路交通网络的文件格式,主要用于自动驾驶仿真应用。它使用XML(扩展名为.xodr)作为描述路网的基础,涵盖了道路、车道、交叉路口等元素的几何形状和逻辑特征,但不包含动态内容‌

以OpenDRIVE格式文件示例:
高精地图用例下载:https://download.csdn.net/download/weixin_50875614/90228572
其中可以看到后缀名为.xodr的文件,使用VisioStudio工具或其它代码查看工具打开,可看到其文本结构如下:
在这里插入图片描述
可以看到,OpenDRIVE是将地图通过一系列的标签表达出来的,其中标签以及标签属性代表了地图中静态元素以及静态元素的属性,具体格式说明参见OpenDRIVE格式规范

地图数据可视化:
使用高精地图可视化工具进行查看:
http://opendrive.bimant.com/
将之前下载好的后缀名为.xodr的地图用例导入到可视化工具中,可进行地图查看:
在这里插入图片描述

高精地图车端部署

在车端部署时,不可能把全国所有的高精地图数据都部署到车端,一个是数据量很大占用资源,第二个是这么多数据不可能同时都用到,因此为了更好的使用高精地图,一般都会在车端部署一个地图引擎,这个引擎是一个服务模块,可以根据定位灵活调度高精地图,帮助车端更好的使用地图服务。

数据传输

在这里插入图片描述
高精地图在车端的数据一般都是NDS格式或OpenDRIVE格式的文件,而车端的通信一般是车载以太网或CAN总线,需要将其转为车载以太网或CAN数据才能发送给ADAS,但转为车载以太网或CAN格式后,都是01的二进制数据,正常都是有对应的xml文件或DBC文件对其解析,将其转化为ADAS看的懂的数据,但由于地图数据量比较大,不方便以常规的xml文件或DBC文件对其解析,因此ADASIS论坛推出了基于车载以太网的ADASIS V3 协议和基于CAN总线的ADASIS V2 协议,它是一种专门针对地图传输的协议,其中Horizon Provider从地图中提取相关数据并按照一定规则将其序列化,之后在车辆总线上传输。当Horizon Reconstructor接收到相关数据后,会根据约定好规则进行反序列化解析,之后将解析好的数据提供给ADAS应用程序。

其中ADASIS协议具体格式参见:ADASIS协议

数据传输内容

Route信息: 有几个推荐路线ID、用户导航路径ID,此路径上的Road ID、每个Road的起点和终点坐标、每个Road的车道数量以及车道连接关系【之前的车道ID在新Road上的新ID】
道路: Road ID、道路类型、道路组成、曲率、坡度、交通事件
交通标志: 路牌类型、路牌形状、路牌位置
交通信号灯: 所在位置、边界形状
地面标识: 地面标志类型、位置、地面限速类型、位置
车道标线: 车道线ID、车道边界线类型、车道线类型、车道线颜色、车道线描述点【坐标、曲率、坡度、航向】
车道: 车道中心基准线ID、车道中心基准线描述点、车道数量、车道ID、车道类型、车道所属道路ID以及下个道路ID中此车道是否被合并、车道宽度、自车所在车道
杆: 杆类型、位置、高度
特殊区域: 到收费站的距离、到服务区的距离、到隧道的距离
天气: 雨、雪、雾
光照: 清晨、白天、黄昏、夜晚

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林沐栖

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值