智能体agent的简单了解
一 智能体agent定义
- 智能体(Agent)是指能够感知环境并采取行动以实现特定目标的代理体。它可以是软件、硬件或一个系统,具备自主性、适应性和交互能力。智能体通过感知环境中的变化(如通过传感器或数据输入),根据自身学习到的知识和算法进行判断和决策,进而执行动作以影响环境或达到预定的目标。智能体在人工智能领域广泛应用,常见于自动化系统、机器人、虚拟助手和游戏角色等,其核心在于能够自主学习和持续进化,以更好地完成任务和适应复杂环境。
- AI Agent,即人工智能体,是一种能够感知环境、进行自主理解、决策和执行动作的智能实体。
- 智能体是一种基于大语言模型的,具备规划思考能力、记忆能力、使用工具函数的能力,能自主完成给定任务的计算机程序。
- 如果把AI Agent理解为一个智能实体的话,LLM充当着智能体的“大脑”角色。AI Agent 会利用 LLM 的推理能力,把问题进行拆解,形成一个一个的小问题,并定义好这些小问题之间的前后关系,先处理哪个,再处理哪个。然后按照顺序,调用LLM、RAG或者外部工具,来解决每一个小问题,直至解决最初的问题。
二 AI Agent的基础架构
- 虽然LLM充当着智能体的大脑,但仅仅有“大脑”并不能完成复杂任务的执行。作为智能体,还需要如“神经感官系统”以及“肢体”的参与,这时候引入AIAgent的基础架构。
- Agent由4个关键部分组成,分别是:规划(Planning)、记忆(Memory)、工具(Tools)、行动(Action)。
1. 规划(Planning)——为了某一目标而作出的决策过程
“规划”充当着智能体的“思维模式”。如果用人类来类比,当接到一个任务时,思维模式可能会像下面这样:
- 首先会思考怎样完成这个任务。
- 然后会把任务拆解成多个子任务分步进行。
- 接着评估现有工具能够帮助我们高效达成目的。
- 在执行任务的时候,我们会对执行过程进行反思和完善,以持续调整策略。
- 执行过程中思考任务何时可以终止。
因此,可以通过 LLM 提示工程(Prompt),为智能体赋予这样的思维模式。比如:在编写提示的时候运用ReAct、CoT等推理模式,引导LLM对复杂的任务进行拆解,拆分为多个步骤,一步步思考和解决,从而使输出的结果更加准确。
2. 记忆(Memory)——收集信息并从中提取相关知识的能力
记忆是大脑存储、保留和回忆信息的能力。
仿照人类的记忆机制,智能体分为了两种记忆机制:
- 短期记忆,如:单次会话的上下文记忆会被短暂的储存,以用于多轮会话,在任务完结后被清空。
- 长期记忆,长时间被保留的信息,如:用户的特征信息、业务信息,通常用向量数据库来存储和快速检索。
3. 工具(Tools)
智能体具备感知环境与决策执行的能力,这离不开“神经感官系统”的帮助,“工具”便充当着这个角色。智能体通过工具从周边环境获取到信息(感知),经过LLM处理后再使用工具完成任务(执行)。
所以我们需要为智能体配备各种工具以及赋予它使用工具的能力。比如:
- 通过调用软件系统不同应用模块的API,获取到指定的业务信息,以及执行业务的操作权限。
- 通过调用外部的插件工具,来获取原本LLM并不具备的能力,
4. 行动(Action)基于环境和规划做出的动作
智能体基于规划和记忆来执行具体的行动,这可能包括与外部世界互动,或者通过工具的调用来完成一个动作,具体来说就是一个输入(Input)任务的最终输出(Output)。
如:实体AI机器人完成一个“鼓掌”动作的任务。
三 AI Agent示例
假设您需要与朋友在附近吃饭,需要AI Agent帮你预订餐厅。Agent会先对您提出的任务进行拆解,如:
第1步(获取当前所在方位):
- 推理1:当前知识不足以回答这个问题,需要知道当前所在方位以及附近的餐厅
- 行动1:使用地图工具(Tools)获取当前所在方位
- 结果1:得出附近餐厅列表
第2步(确定匹配餐厅):
- 推理2:确定预订的餐厅,需要知道您的饮食偏好以及其余细节(如:吃饭时间,人数)
- 行动2:从记忆(Memory)中获取您的饮食偏好、人数、时间等信息
- 结果2:确定最匹配的餐厅
第3步(预订餐厅):
- 推理3:基于结果2,评估当前所拥有的工具能否完成餐厅预订
- 行动3:使用相关插件工具,进行餐厅预订(Aciton)
- 结果3:任务完成