通信原理之模拟幅度调制(线性调制)详解

通信原理系列文章:

通信原理之模拟幅度调制(线性调制)

通信原理之模拟角度调制(非线性调制)

通信原理之模拟调制系统信号的抗造性能

通信原理之数字调制原理

1、基本概念

1.1、调制与解调

    调制,即把消息信号寄托在载波的某个参数上,形成已调信号。已调信号的某个参量,如幅度可以反映消息的变化规律。消息信号可分为调制信号和基带信号,载波可为正弦波或脉冲序列。
调制过

    解调,是调制的过程,从已调信号中恢复消息信号
通俗来讲,消息就相当于货物,车相当于载波。调制相当于装载,解调相当于卸载。

1.2、调制的目的

(1)无线通信对天线尺寸减小的需求
在无线通信中,需要通过天线将信号辐射到空间,根据天线理论
        h ≥ λ 10 h≥\frac{\lambda}{10} h10λ
其中,h为天线的几何尺寸, λ \lambda λ 为发射信号的波长。又信号的波长和频率有以下关系:
        λ = c f \lambda=\frac{c}{f} λ=fc
其中 c为光速 3 x 1 0 8 m / s 3x10^8m/s 3x108m/s。故,若发射信号的频率较低时,如 3kHz,则需要大约 10000m长的天线,显然这是很难实现的。若减小天线尺寸,就需要提高发射信号的频率,通过调制将低频信号搬到高频载波上。如GSM 900MHz 手机的天线只有几里面完全内置在手机内,外观看不到天线。

(2)一条信道中同时传输多路信号
因为调制的实质是频谱搬移,故可以通过调制将多路信号搬移到各自的子信道中,实现多路复用

(3)利用电话线将PC机接入Internet
利用电话线将PC机接入Internet时,需要通过一个“猫”(Modem) 进行"翻译”(模/数信号转换)。

综上,可知调制的目的有以下几点:

  • 匹配信道特性,减小天线尺寸,提高辐射效率;
  • 进行频谱搬移,实现信道的多路复用,提高信道利用率;
  • 扩展信号带宽,提高系统抗干扰能力;
  • 实现带宽与信噪比的互换,即有效性和可靠性的互换;

1.3、调制的分类

    按调制信号m(t)的类型,可分为m(t)为模拟信号时称为模拟调制,为数字时称为数字调制。
    按已调信号的频谱结构是否保留了原来消息信号的频谱模样,可分为 线性调制和非线性调制。
    按载波类型进行分类,若采用正弦型载波则称为连续波调制,若采用脉冲串则称为脉冲调制。
    按正弦载波的受调参量,可分为 幅度调制、频率调制和相位调制。

模拟调制是用模拟的消息信号去控制正弦载波的幅度、频率和相位的调制方式。

2、幅度调制

2.1、基础知识

时 域 卷 积 f 1 ( t ) ∗ f 2 ( t ) ⇔ F 1 ( w ) F 2 ( w ) 频 域 卷 积 f 1 ( t ) f 2 ( t ) ⇔ 1 2 π F 1 ( w ) ∗ F 2 ( w ) 频 移 特 性 f ( t ) e ± j w c t ⇔ F ( w ∓ w c ) 调 制 定 理 f ( t ) c o s w c t ⇔ 1 2 [ F ( w − w c ) + F ( w + w c ) ] 欧 拉 公 式 c o s w c t = 1 2 ( e j w c t + d − j w c t ) ⇔ π [ δ ( w − w c ) + δ ( w + w c ) ] 单 位 冲 击 响 应 1 ⇔ 2 π δ ( w ) 傅 里 叶 变 换 对 及 其 尺 度 变 换 2 π δ ( w ) ⇔ δ ( f ) \begin{matrix} 时域卷积 & f_1(t)*f_2(t)\Leftrightarrow F_1(w)F_2(w)\\ \\ 频域卷积 & f_1(t)f_2(t)\Leftrightarrow \frac{1}{2\pi }F_1(w)*F_2(w)\\ \\ 频移特性 & f(t)e^{\pm jw_ct}\Leftrightarrow F(w \mp w_c)\\ \\ 调制定理 & f(t)cosw_ct \Leftrightarrow \frac{1}{2}[F(w-w_c)+F(w+w_c)]\\ \\ 欧拉公式 & cosw_ct=\frac{1}{2}(e^{jw_ct}+d^{-jw_ct}) \Leftrightarrow \pi [\delta (w-w_c)+\delta (w+w_c)]\\ \\ 单位冲击响应 & 1 \Leftrightarrow 2 \pi \delta(w) \\ \\ 傅里叶变换对及其尺度变换 & 2\pi \delta (w)\Leftrightarrow\delta(f)\\ \\ \end{matrix} f1(t)f2(t)F1(w)F2(w)f1(t)f2(t)2π1F1(w)F2(w)f(t)e±jwctF(wwc)f(t)coswct21[F(wwc)+F(w+wc)]coswct=21(ejwct+djwct)π[δ(wwc)+δ(w+wc)]12πδ(w)2πδ(w)δ(f)

2.2、幅度调制的一般模型

    幅度调制,即通过消息信号控制正弦载波的幅度。
幅度调制模型
其中,消息信号 m(t) 也称基带调制信号, c o s w c t cosw_ct coswct 为载波, h(t) 为 滤波器的冲击响应, s m ( t ) s_m(t) sm(t) 是幅度已调信号。则幅度调制的时域表达式为

        s m ( t ) = [ m ( t ) c o s w c t ] ∗ h ( t ) s_m(t)=[m(t)cosw_ct]*h(t) sm(t)=[m(t)coswct]h(t)

频域表达式为

        S m ( w ) = 1 2 [ M ( w + w c ) + M ( w − w c ) ] H ( w ) S_m(w)=\frac{1}{2}[M(w+w_c)+M(w-w_c)]H(w) Sm(w)=21[M(w+wc)+M(wwc)]H(w)

只要适当选择滤波器的特性,则可得到以下几种幅度调制,AM、DSB、SSB、VSB,他们之间的关系如下图所示。若m(t) 是确知信号,可用傅氏变换 M ( w ) M(w) M(w) 进行谱分析,若是随机信号,则需要通过功率谱 H ( w ) H(w) H(w) 来描述。
在这里插入图片描述

2.3、常规调幅 AM(Amplitude Modulation)

2.3.1、AM-调幅

    对于均值为0的消息信号m(t),外加直流偏置 A 0 A_0 A0,得到 A 0 + m ( t ) A_0+m(t) A0+m(t),然后与载波相乘即可得到AM信号。
AM信号的产生过程
对应调制器的模型为
在这里插入图片描述
    当满足 信息信号的最大值不超过直流偏置 时,即 ∣ m ( t ) ∣ m a x ≤ A 0 |m(t)|_{max} ≤ A_0 m(t)maxA0 时,AM波的包络正比于信息信号的变换规律。AM的时间表达式分为 载波项+边带项,可记为

        s A M ( t ) = [ A 0 + m ( t ) ] c o s w c t = A 0 c o s w c t + m ( t ) c o s w c t s_AM(t)=[A_0+m(t)]cosw_ct=A_0cosw_ct+m(t)cosw_ct s

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值