通信原理系列文章:
通信原理之模拟幅度调制(线性调制)详解
1、基本概念
1.1、调制与解调
调制,即把消息信号寄托在载波的某个参数上,形成已调信号。已调信号的某个参量,如幅度可以反映消息的变化规律。消息信号可分为调制信号和基带信号,载波可为正弦波或脉冲序列。
解调,是调制的逆过程,从已调信号中恢复消息信号。
通俗来讲,消息就相当于货物,车相当于载波。调制相当于装载,解调相当于卸载。
1.2、调制的目的
(1)无线通信对天线尺寸减小的需求
在无线通信中,需要通过天线将信号辐射到空间,根据天线理论
h ≥ λ 10 h≥\frac{\lambda}{10} h≥10λ
其中,h为天线的几何尺寸, λ \lambda λ 为发射信号的波长。又信号的波长和频率有以下关系:
λ = c f \lambda=\frac{c}{f} λ=fc
其中 c为光速 3 x 1 0 8 m / s 3x10^8m/s 3x108m/s。故,若发射信号的频率较低时,如 3kHz,则需要大约 10000m长的天线,显然这是很难实现的。若减小天线尺寸,就需要提高发射信号的频率,通过调制将低频信号搬到高频载波上。如GSM 900MHz 手机的天线只有几里面完全内置在手机内,外观看不到天线。
(2)一条信道中同时传输多路信号
因为调制的实质是频谱搬移,故可以通过调制将多路信号搬移到各自的子信道中,实现多路复用。
(3)利用电话线将PC机接入Internet
利用电话线将PC机接入Internet时,需要通过一个“猫”(Modem) 进行"翻译”(模/数信号转换)。
综上,可知调制的目的有以下几点:
- 匹配信道特性,减小天线尺寸,提高辐射效率;
- 进行频谱搬移,实现信道的多路复用,提高信道利用率;
- 扩展信号带宽,提高系统抗干扰能力;
- 实现带宽与信噪比的互换,即有效性和可靠性的互换;
1.3、调制的分类
按调制信号m(t)的类型,可分为m(t)为模拟信号时称为模拟调制,为数字时称为数字调制。
按已调信号的频谱结构是否保留了原来消息信号的频谱模样,可分为 线性调制和非线性调制。
按载波类型进行分类,若采用正弦型载波则称为连续波调制,若采用脉冲串则称为脉冲调制。
按正弦载波的受调参量,可分为 幅度调制、频率调制和相位调制。
模拟调制是用模拟的消息信号去控制正弦载波的幅度、频率和相位的调制方式。
2、幅度调制
2.1、基础知识
时 域 卷 积 f 1 ( t ) ∗ f 2 ( t ) ⇔ F 1 ( w ) F 2 ( w ) 频 域 卷 积 f 1 ( t ) f 2 ( t ) ⇔ 1 2 π F 1 ( w ) ∗ F 2 ( w ) 频 移 特 性 f ( t ) e ± j w c t ⇔ F ( w ∓ w c ) 调 制 定 理 f ( t ) c o s w c t ⇔ 1 2 [ F ( w − w c ) + F ( w + w c ) ] 欧 拉 公 式 c o s w c t = 1 2 ( e j w c t + d − j w c t ) ⇔ π [ δ ( w − w c ) + δ ( w + w c ) ] 单 位 冲 击 响 应 1 ⇔ 2 π δ ( w ) 傅 里 叶 变 换 对 及 其 尺 度 变 换 2 π δ ( w ) ⇔ δ ( f ) \begin{matrix} 时域卷积 & f_1(t)*f_2(t)\Leftrightarrow F_1(w)F_2(w)\\ \\ 频域卷积 & f_1(t)f_2(t)\Leftrightarrow \frac{1}{2\pi }F_1(w)*F_2(w)\\ \\ 频移特性 & f(t)e^{\pm jw_ct}\Leftrightarrow F(w \mp w_c)\\ \\ 调制定理 & f(t)cosw_ct \Leftrightarrow \frac{1}{2}[F(w-w_c)+F(w+w_c)]\\ \\ 欧拉公式 & cosw_ct=\frac{1}{2}(e^{jw_ct}+d^{-jw_ct}) \Leftrightarrow \pi [\delta (w-w_c)+\delta (w+w_c)]\\ \\ 单位冲击响应 & 1 \Leftrightarrow 2 \pi \delta(w) \\ \\ 傅里叶变换对及其尺度变换 & 2\pi \delta (w)\Leftrightarrow\delta(f)\\ \\ \end{matrix} 时域卷积频域卷积频移特性调制定理欧拉公式单位冲击响应傅里叶变换对及其尺度变换f1(t)∗f2(t)⇔F1(w)F2(w)f1(t)f2(t)⇔2π1F1(w)∗F2(w)f(t)e±jwct⇔F(w∓wc)f(t)coswct⇔21[F(w−wc)+F(w+wc)]coswct=21(ejwct+d−jwct)⇔π[δ(w−wc)+δ(w+wc)]1⇔2πδ(w)2πδ(w)⇔δ(f)
2.2、幅度调制的一般模型
幅度调制,即通过消息信号控制正弦载波的幅度。
其中,消息信号 m(t) 也称基带调制信号, c o s w c t cosw_ct coswct 为载波, h(t) 为 滤波器的冲击响应, s m ( t ) s_m(t) sm(t) 是幅度已调信号。则幅度调制的时域表达式为
s m ( t ) = [ m ( t ) c o s w c t ] ∗ h ( t ) s_m(t)=[m(t)cosw_ct]*h(t) sm(t)=[m(t)coswct]∗h(t)
频域表达式为
S m ( w ) = 1 2 [ M ( w + w c ) + M ( w − w c ) ] H ( w ) S_m(w)=\frac{1}{2}[M(w+w_c)+M(w-w_c)]H(w) Sm(w)=21[M(w+wc)+M(w−wc)]H(w)
只要适当选择滤波器的特性,则可得到以下几种幅度调制,AM、DSB、SSB、VSB,他们之间的关系如下图所示。若m(t) 是确知信号,可用傅氏变换 M ( w ) M(w) M(w) 进行谱分析,若是随机信号,则需要通过功率谱 H ( w ) H(w) H(w) 来描述。
2.3、常规调幅 AM(Amplitude Modulation)
2.3.1、AM-调幅
对于均值为0的消息信号m(t),外加直流偏置 A 0 A_0 A0,得到 A 0 + m ( t ) A_0+m(t) A0+m(t),然后与载波相乘即可得到AM信号。
对应调制器的模型为
当满足 信息信号的最大值不超过直流偏置 时,即 ∣ m ( t ) ∣ m a x ≤ A 0 |m(t)|_{max} ≤ A_0 ∣m(t)∣max≤A0 时,AM波的包络正比于信息信号的变换规律。AM的时间表达式分为 载波项+边带项,可记为
s A M ( t ) = [ A 0 + m ( t ) ] c o s w c t = A 0 c o s w c t + m ( t ) c o s w c t s_AM(t)=[A_0+m(t)]cosw_ct=A_0cosw_ct+m(t)cosw_ct s