通信原理系列文章:
通信原理之数字调制原理介绍
1、二进制数字调制原理
1.1、2ASK(振幅键控) 和 2FSK(频移键控)
1.1.1、振幅键控
振幅键控,是用基带信号控制载波的幅度变化来传递数字信息的。在2ASK信号中,载波的幅度变化只有两种状态,通常用振幅A和0的载波分别表示1、0码。产生方法有两种:
- 通过数字基带信号 s ( t ) s(t) s(t) 和 载波 c ( t ) c(t) c(t) 相乘即可产生 e 2 A S K ( t ) e_{2ASK}(t) e2ASK(t) 信号。
e 2 A S K ( t ) = s ( t ) c o s w c t e_{2ASK}(t)=s(t)cosw_ct e2ASK(t)=s(t)coswct
- 采用键控法,数字基带信号 s ( t ) s(t) s(t) 通过开关电路,控制载波源的接通或断开,由此产生2ASK信号,也称为通断键控(缩写为OOK)。
1.1.2、频移键控
频移键控,是利用载波的频率变化来传递信息的。其产生方法有两种:
- 模拟调频法
- 键控法,在二进制基带信号 s ( t ) s(t) s(t) 的控制下,通过开关电路,对两个不同频率的独立载波源 c o s w 1 t cosw_1t cosw1t、 c o s w 2 t cosw_2t cosw2t 进行选通,频率为 f 1 f_1 f1 的载波表示1码,频率为 f 2 f_2 f2 的载波表示0码。
e 2 F S K ( t ) = s 1 ( t ) c o s w 1 t + s 2 ( t ) c o s w 2 t e_{2FSK}(t)=s_1(t)cosw_1t+s_2(t)cosw_2t e2FSK(t)=s1(t)cosw1t+s2(t)cosw2t
显然,2FSK可看成是两个不同载频的2ASK的叠加。其中 s 1 ( t ) s_1(t) s1(t) 和 s 2 ( t ) s_2(t) s2(t) 都是单极性基带信号,只是对应1、0码的电平取值相反。
1.1.3、解调
数字已调信号的接收机,由“带通滤波器–解调器–抽样判决器” 组成。2ASK信号的解调由包络检波法和相干解调法。
2ASK包络检波的各点波形,在不考虑噪声时,a点的信号就是2ASK信号,经全波整流器后为b点波形,后经低通滤波器后恢复出单极性基带信号是 s(t) c点波形。最后抽样判决器对c点的s(t) 波形进行抽样,并设置一个判决门限和判决、调制规则,若样值大于判决门限则判为1码否则为0码。这样就再生出了原来的数字信息。
对于2FSK的解调,可以分解为2路 2ASK信号的解调,因此也有 包络检波和相干解调法。
示例,画出2FSK包络检波各点波形,对应的调制规则为 f 1 = 3 R B f_1=3R_B f1=3RB 对应 1 码, f 2 = R B f_2=R_B f2=RB 对应 0 码。这意味着 f 1 f_1 f1 在一个码元内是3周载波, f 2 f_2 f2 在一个码元内是1周载波。
c 点波形和 d点波形,这里抽样判决器直接比较样值的大小,可以不用设置门限。判决规则与调制规则相呼应,当 S 1 > S 2 S_1>S_2 S1>S2 时判为 1 码,当 S 1 ≤ S 2 S_1≤S_2 S1≤S2 时判决为 0 码。
1.2、2PSK(相移键控) 和 2DPSK
1.2.1、2PSK的产生
2PSK 是利用载波的不同相位来传递信息的。通常用相位 ψ n = π ψ_n=\pi ψn=π 丢应1码,相位 ψ n = 0 ψ_n=0 ψn=0 对应 0 码,也可以用相反的方式来表示。2PSK 可以用键控法来产生,也可以用模拟相乘法来产生。
1.2.2、2PSDK的解调
2PSK的解调只能通过相干解调法,不能使用包络检波法,因为信息是加载在载波的相位上,而载波的振幅不变。
注意:d点波形是经过相干解调后恢复的双极性基带信号,这里之所示是双极性是因为2PSK在调制时采用的是用双极性基带信号作为控制信号的。并且在实际的2PSK的载波恢复中,存在180度的载波相位模糊(如下图中b点红色波形所示),最终会导致 1 码错判为 0 码,0 码错判为 1 码,这种现象称为倒π现象,也叫反相工作。这是2PSK存在的问题,其主要原因是 2PSK是用固定的载波相位来表示信息的,如同上一章介绍的绝对码概念,因而 2PSK 也被称为 绝对调相,容易受到设备初始状态不确定性的影响,解决方法可以用相对码/差分码的概念,采用差分移相键控 2DPSK。
1.2.3、2DPSK(差分相移键控)
2DPSK是利用前后相邻码元的载波相对相位表示信息。
Δ φ = φ n − φ n − 1 = { 0 → " 0 " π → " 1 " \Delta \varphi =\varphi _n-\varphi _{n-1}=\left\{\begin{matrix} 0\rightarrow "0" &\\ \pi \rightarrow "1" & \end{matrix}\right. Δφ=φn−φn−1={
0→"0"π→"1"
如图所示,设发送码元为 1 0 1,1 码表示本码元的出现位与前一个码元的出现位的相位差为 π \pi π,0 码表示本码元的出现位与前一个码元的出现位的相位差为 0 0 0。
如果将 a n a_n an 序列进行差分编码,编码规则是 b n = a n ⨁ b n − 1 b_n=a_n\bigoplus b_{n-1} bn=an⨁bn−1。
此时若对序列 b n b_n bn 进行绝对调相,则可以得到 1DPSK。这给我们一种启示,先进行 差分编码 ,把绝对码变换成相对码,然后进行绝对调相 即可得到 2DPSK信号。
1.2.4、2DPSK信号的解调
解调是调制的逆过程,有两种方法:2DPSK相干解调+码反变换(差分译码)法和2DPSK差分相干解调(相位比较法)。
1)、2DPSK相干解调+码反变换(差分译码)法
先将 2DPSK 先进行2PSK相干解调,输出的相对码进行进行差分译码还原为绝对码。这种方法称为 2DPSK相干解调+码反变换(差分译码)法。
2DPSK解调过程对应的波形如下所示:
注意:解调的过程虽然也会发生相位模糊现象,但是因为进行差分译码的规则也等于他们取反的模二加算法,即 1 ⨁ 0 = 0 ⨁ 1 1\bigoplus0=0\bigoplus1 1⨁0=0⨁1, 1 ⨁ 1 = 0 ⨁ 0 1\bigoplus1=0\bigoplus0 1⨁1=0⨁0,故差分译码后的绝对码不会发生反相工作现象,从而消除了相位模糊带来的影响。
2)、2DPSK差分相干解调(相位比较法)
对收到的2DPSK信号,直接利用前后相邻码元的载波相对相位差,即可恢复出原来的发送序列,这种方法构造的解调方法称为相位比较法。
下面通过各点的波形来说明相位比较法的工作原理。
注意:这里延时一个码长 T B T_B TB 的作用是,将前一个码元延时到当前码元的时间段内,以便进行相位比较。
相乘器的作用是相位比较,相乘的结果反映了前后码元的载波相位差,因此抽样判决后恢复的是原始的数字信息 a n a_n an,后面无需再需要差分译码。
3)、多种数字调制方法的对比
二进制已调信号的表达式,都可以表示为基带信号 s ( t ) s(t) s(t) 和载波 c o s w c t cosw_ct coswct 相乘。
e ( t ) = s ( t ) c o s w c t e(t)=s(t)cosw_ct e(t)=s(t)coswct
当基带信号 s ( t ) s(t) s(t) 为 单极性 时,已调信号 e ( t ) e(t) e(t) 是 2ASK;
当基带信号 s ( t ) s(t) s(t) 为 对应绝对码 a n {a_n} an的双极性码 时,已调信号 e ( t ) e(t) e(t) 是 2PSK;
当基带信号 s ( t ) s(t) s(t) 为 对应相对码 b n {b_n} bn的双极性码 时,已调信号 e ( t ) e(t) e(t) 是 2DPSK;
2FSK信号,可以分解成两个不同载频的2ASK信号的叠加,也正因此在解调时,无需设置专门的门限。
e 2 F S K ( t ) = s 1 ( t ) c o s w 1 t + s 2 ( t ) c o s w 2 t e_{2FSK}(t)=s_1(t)cosw_1t+s_2(t)cosw_2t e2FSK(t)=s1(t)cosw1t+s2(t)cosw2t
2、二进制数字已调信号的功率谱密度
2.1、分析方法
接收机中解调器前面的带通滤波器BPF的作用是传信号滤噪声,它允许已调信号顺利的通过达到解调器的输入端,而将噪声进行带外滤除。即我们设计滤波器的依据是,根据已调信号的频谱特性,但因已调信号是随机信号,故需要通过功率谱(Power Spectral Density,PSD)密度来进行分析,获得带宽 B 和载波分量 f c f_c fc 等信息。具体分析方法,可以借助于 基带信号的功率谱,对于2ASK利用单极性基带信号的功率谱,对于2PSK利用双极性基带信号的功率谱,2FSK可以看成两个2ASK信号的叠加。
2.2、2ASK/2FSK的功率谱
设 P s ( f ) P_s(f) Ps(f) 是单极性基带信号的功率谱,基带带宽是 f B f_B fB ,数值上等于码元速率 R B R_B RB 。
由于2ASK是用单极性基带信号 s ( t ) s(t) s(t) 控制载波的振幅变换,所以 2ASK信号的功率谱是 单极性基带信号功率谱的线性搬移。
e 2 A S K ( t ) = s ( t ) c o s w c t e_{2ASK}(t)=s(t)cosw_ct e