机器学习算法基础(7): 线性回归算法模型,过拟合与欠拟合以及岭回归

这篇博客介绍了线性回归的基础,包括线性关系模型、矩阵与数组的区别、线性回归策略如正规方程和梯度下降。讨论了过拟合与欠拟合的问题,解释了正则化如何通过岭回归来解决过拟合,并通过波士顿房价数据集展示了线性回归的实际应用。
摘要由CSDN通过智能技术生成

线性回归:回归算法

回归:目标值连续

  • 房价预测

  • 销售额预测

  • 贷款额度

回归:寻找一种能预测的趋势

线性关系:在二维中,直线关系。在三维中,特征有两个,目标值有一个,关系在平面中。

1、线性关系模型

在这里插入图片描述
在这里插入图片描述

线性回归通过找到属性和权重一种组合来预测结果

矩阵

大多数算法计算基础

数组与矩阵的区别

在这里插入图片描述

  • mutiply 数组乘法
  • dot:矩阵乘法

2、线性回归策略

预测结果与真实值有误差

回归:迭代的算法,知道误差,不断减小误差,

损失函数

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

寻找损失函数最小时对应的w值

正规方程

在这里插入图片描述

最小二乘法之梯度下降

在这里插入图片描述

通过不断学习,取到损失函数最小值,学习速率为α
在这里插入图片描述
搜查的初始位置随即开始:算法的自我学习过程

线性回归案例:波士顿房价数据集

在这里插入图片描述

在这里插入图片描述
scikit-learn:

  • 优点:封装好,建立模型简单,预测简单

  • 缺点:算法的过程,有些参数都在算法API内部优化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值