线性回归:回归算法
回归:目标值连续
-
房价预测
-
销售额预测
-
贷款额度
回归:寻找一种能预测的趋势
线性关系:在二维中,直线关系。在三维中,特征有两个,目标值有一个,关系在平面中。
1、线性关系模型
线性回归通过找到属性和权重一种组合来预测结果
矩阵
大多数算法计算基础
数组与矩阵的区别
- mutiply 数组乘法
- dot:矩阵乘法
2、线性回归策略
预测结果与真实值有误差
回归:迭代的算法,知道误差,不断减小误差,
损失函数
寻找损失函数最小时对应的w值
正规方程
最小二乘法之梯度下降
通过不断学习,取到损失函数最小值,学习速率为α
搜查的初始位置随即开始:算法的自我学习过程
线性回归案例:波士顿房价数据集
scikit-learn:
-
优点:封装好,建立模型简单,预测简单
-
缺点:算法的过程,有些参数都在算法API内部优化