1. 矩阵
矩阵的相加,相减以及矩阵乘以常数都很好理解,但是矩阵乘以矩阵就不太好理解了。
1.1. 矩阵 × 矩阵
第一个矩阵的每一行乘以第二个矩阵的每一列,对应位置就是值。
- A(2,2) * B(2,2) = C
A的第一行乘以B的第一列,就是C的第一行第一列的值,A的第二行乘以B的第二列就是C的第二行第二列的值,在矩阵的乘法中,都是整行整列的乘
写两个题练手:
注意:矩阵的乘法不符合交换律
2.2. 矩阵的逆
2.2.1. 单位矩阵
由上图可知,单位矩阵就是对角线为1,其余位置都是0的矩阵就是单位矩阵。
单位矩阵的性质:任何矩阵乘以单位矩阵都邓毅那个矩阵本身。
A * I = A
2.2.2. 矩阵的逆
2. 三元线性方程求解
三元线性方程其实就是有三个未知数x,y,z,那么我知道二元方程确定了一条直线,那么三元方程就确定了一个平面
两个面相交成直线,我们来求解下面这个三元线性方程
用矩阵的方法求这个三元线性方程
我们要把第一行的第二列,第三列变成0,第二行的第一列,第三列变成0,第三行的第一列,第二列变成0。
求到这一步,我们已经可以通过第三行得到z = -2了,所以其它两个未知数就很好求出来了。