线性代数学习(一):大致矩阵介绍

1. 矩阵

矩阵的相加,相减以及矩阵乘以常数都很好理解,但是矩阵乘以矩阵就不太好理解了。

1.1. 矩阵 × 矩阵

第一个矩阵的每一行乘以第二个矩阵的每一列,对应位置就是值。

  • A(2,2) * B(2,2) = C
    A的第一行乘以B的第一列,就是C的第一行第一列的值,A的第二行乘以B的第二列就是C的第二行第二列的值,在矩阵的乘法中,都是整行整列的乘
    写两个题练手:
    在这里插入图片描述
    注意:矩阵的乘法不符合交换律
    在这里插入图片描述

2.2. 矩阵的逆

2.2.1. 单位矩阵

在这里插入图片描述
由上图可知,单位矩阵就是对角线为1,其余位置都是0的矩阵就是单位矩阵。
单位矩阵的性质:任何矩阵乘以单位矩阵都邓毅那个矩阵本身。
A * I = A

2.2.2. 矩阵的逆

在这里插入图片描述

2. 三元线性方程求解

三元线性方程其实就是有三个未知数x,y,z,那么我知道二元方程确定了一条直线,那么三元方程就确定了一个平面
在这里插入图片描述
两个面相交成直线,我们来求解下面这个三元线性方程
在这里插入图片描述
用矩阵的方法求这个三元线性方程
在这里插入图片描述
我们要把第一行的第二列,第三列变成0,第二行的第一列,第三列变成0,第三行的第一列,第二列变成0。
在这里插入图片描述
在这里插入图片描述
求到这一步,我们已经可以通过第三行得到z = -2了,所以其它两个未知数就很好求出来了。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

若能绽放光丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值