Transformer中[CLS] 标记的概念

[CLS] 标记的概念

[CLS] 是一种特殊的标记(token),在基于Transformer架构(如BERT、HAMMER等)的模型中广泛使用。它通常被添加到输入序列的开头,用于表示整个输入序列的全局语义信息。

[CLS] 的特点与作用
1、序列全局表示:

在Transformer模型中,经过多层自注意力机制后,输入的每个token都会被更新为其上下文感知的表示。
[CLS] 标记的嵌入向量经过自注意力机制后,能够聚合整个输入序列的全局信息,因此常用于分类任务或序列级别的表示学习。

2、位置固定:

[CLS] 通常固定添加在输入序列的最前面。
在输入序列中,假设序列为 [“The”, “cat”, “is”, “on”, “the”, “mat”],模型的实际输入为:
[[CLS],“The”,“cat”,“is”,“on”,“the”,“mat”]

3、专用任务的设计:

在BERT等模型中,[CLS] 的最终嵌入通常被送入特定的分类头,用于执行任务(如分类、回归等)。
在多模态模型中(如HAMMER),[CLS] 嵌入被用作融合了多模态信息的全局表示,用于多标签分类、二分类等任务。

[CLS] 在具体任务中的使用
1、文本分类任务
在单模态文本任务中,[CLS] 的输出嵌入表示整个文本序列的特征,直接用于分类任务:
y ^ = softmax ⁡ ( W ⋅ h [ C L S ] ) \hat{y}=\operatorname{softmax}\left(W \cdot h_{[\mathrm{CLS}]}\right) y^=softmax(Wh[CLS])

其中, h [ C L S ] h_{[CLS]} h[CLS]是最后一层Transformer的[CLS]嵌入,W 是分类任务的权重矩阵。
2、多模态任务
在多模态模型(如HAMMER)中,[CLS] 嵌入通过跨模态注意力机制,整合了图像和文本的特征,表示图像-文本对的全局语义,用于以下任务:
二分类(真实/伪造):
使用 [CLS] 嵌入预测输入是否被操控。
多标签分类(伪造类型检测):
[CLS] 嵌入表示多模态特征的综合结果,用于预测伪造类型。
3、嵌入特征迁移
[CLS] 嵌入还可用于迁移学习,将其作为高层次特征,应用于其他下游任务。

[CLS] 的优势
高效:通过一个标记即可捕获全局信息,无需额外的序列处理。
任务通用性强:适用于分类、回归、排序、多模态学习等多种任务。
容易扩展:可以与其他标记(如[SEP]、[MASK])协同工作,用于不同任务场景。
[CLS] 的局限性
信息损失:由于它是一个单一向量,有时难以充分表达复杂序列的所有细节信息。
依赖架构优化:需要精心设计自注意力机制和任务头,才能充分利用 [CLS] 嵌入。
与具体任务相关性有限:在一些任务中,[CLS] 的嵌入可能不能完全反映局部特征。
总的来说,[CLS] 是Transformer模型中一个关键的标记,通过捕获全局语义,支持多种任务的实现,尤其适合分类和多模态任务。

### CLS Token的作用 在Vision Transformer (ViT)架构中,CLS token是一个特殊的标记,在输入序列的第一个位置加入。这个令牌在整个网络的每一层都存在,并最终作为分类任务的主要特征表示[^1]。 CLS token的设计目的是为了提供一个聚合的信息点,使得模型能够集中学习如何从图像的不同部分提取出对于分类最有帮助的内容。通过将CLS token与input tokens并置进入Transformer blocks,确保了信息可以在这些tokens间流动,从而让CLS token捕获全局上下文特性[^2]。 具体来说,CLS token通常初始化为随机值或零向量,并作为一个可训练参数参与整个模型的学习过程。随着训练深入,它逐渐学会捕捉对特定视觉识别任务至关重要的模式和属性[^3]。 ### 使用方法 以下是关于如何定义以及使用CLS token的一个Python代码片段: ```python import torch.nn as nn class ViT(nn.Module): def __init__(self, img_size=224, patch_size=16, embed_dim=768, num_classes=1000): super(ViT, self).__init__() # 定义其他组件... # 初始化CLS token self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) def forward(self, x): B = x.shape[0] # 扩展CLS token至匹配batch size cls_tokens = self.cls_token.expand(B, -1, -1) # 将CLS token连接到patch embeddings上 x = torch.cat((cls_tokens, x), dim=1) # 接下来是标准的transformer layers... return x[:, 0] # 返回CLS token对应的输出用于分类 ``` 在这个例子中,`self.cls_token`被创建成一个具有固定尺寸(通常是embed_dim)的一维张量,并且该张量会在每次调用forward函数时根据当前批次的数据数量进行适当调整以便可以与其他patches一起送入后续处理阶段。最后只取经过多层变换后的第一个元素即CLS token的位置来代表整幅图片的整体语义信息来进行分类决策。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值