目标检测算法在处理红外图像时,常用的性能评估指标与处理可见光图像类似,但也会根据红外图像的特点有一些特殊考量,以下是具体介绍:
-
通用评估指标
- 准确率(Accuracy)
定义:检测正确的目标数量与总检测目标数量的比值,计算公式为: A c c u r a c y = T P + T N T P + T N + F P + F N (1) Accuracy=\frac{TP+TN}{TP+TN+FP+FN} \tag{1} Accuracy=TP+TN+FP+FNTP+TN(1),其中(True Positive)为真正例,即正确检测出的正样本数量;(True
Negative)为真反例;(False Positive)为假正例;(False Negative)为假反例。
意义:反映了算法检测结果的整体正确性,但在样本不均衡时可能存在误导性。
例子:假设在一批森林红外图像中,总共检测了 100 个目标,其中实际有 70 个是野生动物,30 个是误检的树木或其他干扰物。经过人工标注确认,算法正确检测出了 60 个野生动物,把 10 个野生动物误判为其他物体,同时把 20 个非野生动物误判为野生动物。那么准确率为: 60 + ( 100 − 70 − 20 ) 100 = 70 % \frac{60+(100-70-20)}{100}=70\% 10060+(100−70−20)=70%在这个例子中,准确率反映了算法在整体检测结果中正确判断的比例,但如果野生动物在图像中占比很少,准确率可能不能很好地反映算法对野生动物检测的真实能力。 - 精确率(Precision)
定义:预测为正例的样本中,真正为正例的比例,公式为: P r e c i s i o n = T P T P + F P (2) Precision=\frac{TP}{TP+FP}\tag{2} Precision=TP+FPTP(2)
意义:衡量了算法检测出的目标中,真正是目标的比例,体现了算法的查准能力。
例子:在上述例子中,精确率为 60 60 + 20 = 75 % \frac{60}{60+20}=75\% 60+2060=75%,即算法检测出的 80 个 “野生动物” 中,真正是野生动物的比例为 75%。它表明了算法检测出的目标中,确实是我们想要的野生动物目标的比例,体现了算法的查准能力,在这个例子中意味着每检测出 100 个目标,大约有 75 个是真正的野生动物。
召回率(Recall)
定义:实际为正例的样本中,被正确检测为正例的比例,即 P r e c i s i o n = T P T P + F N (3) Precision=\frac{TP}{TP+FN}\tag{3} Precision=TP+FNTP(3)
意义:反映了算法能够检测出的目标的完整性,体现了算法的查全能力。
例子:召回率为 60 60 + 10 = 85.7 % \frac{60}{60+10}=85.7\% 60+1060=85.7%,即实际的 70 个野生动物中,算法成功检测出了 60 个。
反映了算法能够检测出的野生动物目标的完整性,在这个例子中说明算法能检测出大部分的野生动物,但仍有部分遗漏。-
F1 值 定义:精确率和召回率的调和平均数,公式为: F 1 = 2 × P r e c i s i o n × R e c a l l P r e c i s i o n + R e c a l l (4) F1=2\times \frac{Precision\times Recall}{Precision+ Recall}\tag{4} F1=2×Precision+RecallPrecision×Recall(4)
意义:综合考虑了精确率和召回率,更全面地评估算法性能,取值范围在 0 到 1之间,值越高表示性能越好。
例子:根据前面计算的精确率和召回率,F1 值为 2 × 0.75 × 0.857 0.75 + 0.857 = 0.8 2\times \frac{0.75\times 0.857}{0.75+ 0.857}=0.8 2×0.75+0.8570.75×0.857=0.8,
综合了精确率和召回率,更全面地评估了算法在检测野生动物目标时的性能,避免了只看精确率或召回率的片面性。 -
平均精度(Average Precision,AP) 定义:在不同召回率水平下的精确率的平均值,通过计算精确率 -
召回率曲线下的面积得到。
意义:用于衡量算法在不同难度目标检测上的综合性能,AP 值越高,说明算法在各类目标检测上的表现越均衡、越优秀。
例子:在不同召回率水平下计算精确率,假设在召回率为 0.1、0.2、0.3 等不同点上,对应的精确率分别为 0.9、0.8、0.7 等,通过计算这些点构成的精确率 - 召回率曲线下的面积得到 AP 值,假设为 0.8。用于衡量算法在检测野生动物目标时,不同难度情况下的综合性能,AP 值越高说明算法在各种情况下检测野生动物的表现越均衡、越优秀。 -
平均精度均值(Mean Average Precision,mAP) 定义:在多个类别上的 AP
的平均值,用于评估多类别目标检测算法的性能。
意义:是目标检测领域中最常用的综合评估指标之一,能全面反映算法在不同类别目标检测任务中的整体性能。
例子:如果森林环境中除了检测野生动物,还需要检测一些特定的植物等其他类别目标,分别计算每个类别的 AP 值,假设野生动物的 AP 为 0.8,植物的 AP 为 0.7,那么 mAP 为0.75。全面反映了算法在森林红外图像中对多个类别目标检测任务的整体性能。
- 准确率(Accuracy)
-
针对红外图像的特殊评估指标
-
温度检测准确性
定义:检测到的目标温度与实际温度的偏差程度,可通过计算平均绝对误差(MAE)或均方误差(MSE)等来衡量,如 M A E = 1 n ∑ i = 1 n ∣ T p r e d i c t i o n , i − T a c t u a l , i ∣ MAE=\frac{1}{n}\sum^n_{i=1}|T_{prediction,i}-T_{actual,i}| MAE=n1i=1∑n∣Tprediction,i−Tactual,i∣,其中 T p r e d i c t i o n , i T_{prediction,i} Tprediction,i为预测的温度, T a c t u a l , i T_{actual,i} Tactual,i为实际温度,n为样本数量。
意义:由于红外图像与温度密切相关,该指标对于评估涉及温度检测的目标检测算法至关重要,能反映算法对目标温度特征的捕捉和预测能力。
例子:假设野生动物的实际平均体温为 38℃,算法检测到的该野生动物的平均温度为 37℃,通过计算多只野生动物的温度偏差,得到平均绝对误差为 1℃。对于一些需要通过温度来进一步分析野生动物健康状况等应用场景,该指标能反映算法对目标温度特征的捕捉和预测能力,1℃的误差在一定程度上可能会影响后续对野生动物状态的判断。 -
热对比度检测指标
定义:评估算法对目标与背景热对比度的检测能力,例如计算检测前后图像的热对比度变化,或比较检测结果中目标与背景的平均温度差异等。
意义:红外图像中目标与背景的热对比度是目标检测的重要依据,该指标能反映算法在利用热对比度信息进行目标检测方面的性能。
例子:在原始红外图像中,野生动物与背景的平均热对比度为 10℃,算法检测后,通过分析检测结果图像,得到目标与背景的平均热对比度为 8℃,热对比度有所降低但仍能较好地区分目标。反映了算法在利用热对比度信息进行野生动物目标检测方面的性能,热对比度降低可能会影响对目标边界的准确判断,但如果仍能有效区分目标,说明算法在这方面有一定的稳定性。 -
低分辨率目标检测指标
定义:针对红外图像中低分辨率目标的检测情况,可采用小目标检测准确率、召回率等指标的变体,如计算特定尺寸以下目标的检测准确率和召回率等。
意义:能更有针对性地评估算法在处理红外图像中低分辨率小目标时的性能,因为小目标在红外图像中检测难度较大,是衡量算法性能的关键因素之一。
例子:假设图像中有一些体型较小的野生动物,它们在图像中所占像素较少,属于低分辨率目标。对于这些小目标,算法的检测准确率为 60%,召回率为 50%。专门衡量了算法在处理红外图像中低分辨率野生动物目标时的性能,在森林监测中,小型野生动物的检测同样重要,这两个指标能帮助我们了解算法在这方面的能力,以便针对性地改进算法。
-