第五课-LMDeploy 量化部署 LLM-VLM 实践作业

技术文档:

Tutorial/lmdeploy/README.md at camp2 · InternLM/Tutorial · GitHub

基础作业(结营必做)

完成以下任务,并将实现过程记录截图:

  • 配置 LMDeploy 运行环境
  • 以命令行方式与 InternLM2-Chat-1.8B 模型对话

1.LMDeploy环境部署

    1.1 创建开发机

    1.2 创建conda环境

       InternStudio开发机创建conda环境(推荐)

由于环境依赖项存在torch,下载过程可能比较缓慢。InternStudio上提供了快速创建conda环境的方法。打开命令行终端,创建一个名为lmdeploy的环境:studio-conda -t lmdeploy -o pytorch-2.1.2

       1.3 安装LMDeploy

接下来,激活刚刚创建的虚拟环境。

conda activate lmdeploy

安装0.3.0版本的lmdeploy。

pip install lmdeploy[all]==0.3.0

    2.LMDeploy模型对话(chat)

       2.1 Huggingface与TurboMind

       HuggingFace

HuggingFace是一个高速发展的社区,包括Meta、Google、Microsoft、Amazon在内的超过5000家组织机构在为HuggingFace开源社区贡献代码、数据集和模型。可以认为是一个针对深度学习模型和数据集的在线托管社区,如果你有数据集或者模型想对外分享,网盘又不太方便,就不妨托管在HuggingFace。

托管在HuggingFace社区的模型通常采用HuggingFace格式存储,简写为HF格式

但是HuggingFace社区的服务器在国外,国内访问不太方便。国内可以使用阿里巴巴的MindScope社区,或者上海AI Lab搭建的OpenXLab社区,上面托管的模型也通常采用HF格式

       TurboMind

TurboMind是LMDeploy团队开发的一款关于LLM推理的高效推理引擎,它的主要功能包括:LLaMa 结构模型的支持,continuous batch 推理模式和可扩展的 KV 缓存管理器。

TurboMind推理引擎仅支持推理TurboMind格式的模型。因此,TurboMind在推理HF格式的模型时,会首先自动将HF格式模型转换为TurboMind格式的模型。该过程在新版本的LMDeploy中是自动进行的,无需用户操作。

几个容易迷惑的点:

  • TurboMind与LMDeploy的关系:LMDeploy是涵盖了LLM 任务全套轻量化、部署和服务解决方案的集成功能包,TurboMind是LMDeploy的一个推理引擎,是一个子模块。LMDeploy也可以使用pytorch作为推理引擎。
  • TurboMind与TurboMind模型的关系:TurboMind是推理引擎的名字,TurboMind模型是一种模型存储格式,TurboMind引擎只能推理TurboMind格式的模型。

2.2 下载模型

    InternStudio开发机上下载模型(推荐)

如果你是在InternStudio开发机上,可以按照如下步骤快速下载模型。

首先进入一个你想要存放模型的目录,本教程统一放置在Home目录。执行如下指令:cd ~

然后执行如下指令由开发机的共享目录软链接拷贝模型:

ln -s /root/share/new_models/Shanghai_AI_Laboratory/

internlm2-chat-1_8b /root/

执行完如上指令后,可以运行“ls”命令。可以看到,当前目录下已经多了一个internlm2-chat-1_8b文件夹,即下载好的预训练模型。

   

       2.3 使用Transformer库运行模型

Transformer库是Huggingface社区推出的用于运行HF模型的官方库。

在2.2中,我们已经下载好了InternLM2-Chat-1.8B的HF模型。下面我们先用Transformer来直接运行InternLM2-Chat-1.8B模型,后面对比一下LMDeploy的使用感受。

2.4 使用LMDeploy与模型对话

这一小节我们来介绍如何应用LMDeploy直接与模型进行对话。

进阶作业:

完成以下任务,并将实现过程记录截图:

  • 设置KV Cache最大占用比例为0.4,开启W4A16量化,以命令行方式与模型对话。

  • 以API Server方式启动 lmdeploy,开启 W4A16量化,调整KV Cache的占用比例为0.4,分别使用命令行客户端与Gradio网页客户端与模型对话。

  • 使用W4A16量化,调整KV Cache的占用比例为0.4,使用Python代码集成的方式运行internlm2-chat-1.8b模型。

  • 使用 LMDeploy 运行视觉多模态大模型 llava gradio demo。

最新版本的LMDeploy支持了llava多模态模型,下面演示使用pipeline推理llava-v1.6-7b。

      

以下是进阶作业的跟随教程部分的详细步骤:

3.LMDeploy模型量化(lite)

本部分内容主要介绍如何对模型进行量化。主要包括 KV8量化和W4A16量化。总的来说,量化是一种以参数或计算中间结果精度下降换空间节省(以及同时带来的性能提升)的策略。

正式介绍 LMDeploy 量化方案前,需要先介绍两个概念:

  • 计算密集(compute-bound): 指推理过程中,绝大部分时间消耗在数值计算上;针对计算密集型场景,可以通过使用更快的硬件计算单元来提升计算速度。
  • 访存密集(memory-bound): 指推理过程中,绝大部分时间消耗在数据读取上;针对访存密集型场景,一般通过减少访存次数、提高计算访存比或降低访存量来优化。

常见的 LLM 模型由于 Decoder Only 架构的特性,实际推理时大多数的时间都消耗在了逐 Token 生成阶段(Decoding 阶段),是典型的访存密集型场景。

那么,如何优化 LLM 模型推理中的访存密集问题呢? 我们可以使用KV8量化W4A16量化。KV8量化是指将逐 Token(Decoding)生成过程中的上下文 K 和 V 中间结果进行 INT8 量化(计算时再反量化),以降低生成过程中的显存占用。W4A16 量化,将 FP16 的模型权重量化为 INT4,Kernel 计算时,访存量直接降为 FP16 模型的 1/4,大幅降低了访存成本。Weight Only 是指仅量化权重,数值计算依然采用 FP16(需要将 INT4 权重反量化)。

3.1 设置最大KV Cache缓存大小

KV Cache是一种缓存技术,通过存储键值对的形式来复用计算结果,以达到提高性能和降低内存消耗的目的。在大规模训练和推理中,KV Cache可以显著减少重复计算量,从而提升模型的推理速度。理想情况下,KV Cache全部存储于显存,以加快访存速度。当显存空间不足时,也可以将KV Cache放在内存,通过缓存管理器控制将当前需要使用的数据放入显存。

模型在运行时,占用的显存可大致分为三部分:模型参数本身占用的显存、KV Cache占用的显存,以及中间运算结果占用的显存。LMDeploy的KV Cache管理器可以通过设置--cache-max-entry-count参数,控制KV缓存占用剩余显存的最大比例。默认的比例为0.8。

下面通过几个例子,来看一下调整--cache-max-entry-count参数的效果。首先保持不加该参数(默认0.8),运行1.8B模型。

与模型对话,查看右上角资源监视器中的显存占用情况。

  

此时显存占用为7856MB。下面,改变--cache-max-entry-count参数,设为0.5。

与模型对话,再次查看右上角资源监视器中的显存占用情况。

看到显存占用明显降低,变为6608M。

下面来一波“极限”,把--cache-max-entry-count参数设置为0.01,约等于禁止KV Cache占用显存。

然后与模型对话,可以看到,此时显存占用仅为4560MB,代价是会降低模型推理速度。

3.2 使用W4A16量化

LMDeploy使用AWQ算法,实现模型4bit权重量化。推理引擎TurboMind提供了非常高效的4bit推理cuda kernel,性能是FP16的2.4倍以上。它支持以下NVIDIA显卡:

  • 图灵架构(sm75):20系列、T4
  • 安培架构(sm80,sm86):30系列、A10、A16、A30、A100
  • Ada Lovelace架构(sm90):40 系列

仅需执行一条命令,就可以完成模型量化工作。

运行时间较长,请耐心等待。量化工作结束后,新的HF模型被保存到internlm2-chat-1_8b-4bit目录。下面使用Chat功能运行W4A16量化后的模型。

KV Cache比例不调整,显存并没有降低。

为了更加明显体会到W4A16的作用,我们将KV Cache比例再次调为0.01,查看显存占用情况。

4.LMDeploy服务(serve)

在第二章和第三章,我们都是在本地直接推理大模型,这种方式成为本地部署。在生产环境下,我们有时会将大模型封装为API接口服务,供客户端访问。

我们把从架构上把整个服务流程分成下面几个模块。

  • 模型推理/服务。主要提供模型本身的推理,一般来说可以和具体业务解耦,专注模型推理本身性能的优化。可以以模块、API等多种方式提供。
  • API Server。中间协议层,把后端推理/服务通过HTTP,gRPC或其他形式的接口,供前端调用。
  • Client。可以理解为前端,与用户交互的地方。通过通过网页端/命令行去调用API接口,获取模型推理/服务。

4.1 启动API服务器

通过以下命令启动API服务器,推理internlm2-chat-1_8b模型:

lmdeploy serve api_server \

    /root/internlm2-chat-1_8b \

    --model-format hf \

    --quant-policy 0 \

    --server-name 0.0.0.0 \

    --server-port 23333 \

    --tp 1

其中,model-format、quant-policy这些参数是与第三章中量化推理模型一致的;server-name和server-port表示API服务器的服务IP与服务端口;tp参数表示并行数量(GPU数量)。

4.2 命令行客户端连接API服务器

在“4.1”中,我们在终端里新开了一个API服务器。

本节中,我们要新建一个命令行客户端去连接API服务器。首先通过VS Code新建一个终端:

运行命令行客户端,运行后,可以通过命令行窗口直接与模型对话:

4.3 网页客户端连接API服务器

关闭刚刚的VSCode终端,但服务器端的终端不要关闭。

新建一个VSCode终端,激活conda环境。

使用Gradio作为前端,启动网页客户端。

运行命令后,网页客户端启动。在电脑本地新建一个cmd终端,新开一个转发端口:

打开浏览器,访问地址http://127.0.0.1:6006

然后就可以与模型进行对话了!

5.Python代码集成

在开发项目时,有时我们需要将大模型推理集成到Python代码里面。

5.1 Python代码集成运行1.8B模型

5.2 向TurboMind后端传递参数

6.拓展部分

6.1 使用LMDeploy运行视觉多模态大模型llava

最新版本的LMDeploy支持了llava多模态模型,下面演示使用pipeline推理llava-v1.6-7b。

我们也可以通过Gradio来运行llava模型。新建python文件gradio_llava.py。

      

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值