- 任务描述
这批数据来自于spm12(https://tinyurl.com/scelanz)官网,被试需要做2个runs,如下图所示,需要对箭头的方向做出反应,箭头朝右就按右键,朝左按左键,这批数据中有被试的反应时,准确率,可以在此文件夹用txt形式打开(sub-01_task-flanker_run-2_events.tsv)。
2.数据整理
2.1 观察结构像和功能像
在MATLAB的命令窗口行输入 spm fmri
我们还需要将*.gz数据进行解压,可以用命令
gunzip('*.gz')
按照下图,点击Display,同样功能像也可以这样加进去,我们还可以看每个被试的时间序列信息
观察功能像:
3.预处理
添加数据:双击session按钮,找到需要添加数据的文件夹路径,选择sub-08_task-flanker_run-1_bold.nii,1 “1”是第一个frame或者volume,我们需要在Filters下面输入1:146(如果不知道多少个volumes,就输入1:1000,这样就会把所有的volumes加载进去),然后点击enter,右键select all,点击done,就得到一个run的所有数据。如下图所示。
为了精确找到文件,在 .* 的左边输入run-1。
3.2 Slice-Timing Correction
因为我们得到的fMRI数据是在不同的时间点扫描的,因此我们需要做一些处理将这些数据看似在同一个时间点上获得的。
首先点击slice timing按钮→data→找到^rsub-08_task-flanker_run-1.*加在进来,在filter中输入1:146 →done
我们可以通过输入以下图片中的命令,获取数据信息,fname是数据的名字,dim是维度,输入V(1).dim,可以得到数据的维度 64 64 40。40是在z轴的维度信息。
我们在Number of Slices中输入40(z轴的维度),TA = 2-(2/40),Slice order enter [1:2:40
2:2:40] ,Reference Slice enter a value of 1,生成的文件以a开头。
Coregistration
我们所采集到的功能数据大小,形状,维度不一致,因此需要将他们配准到标准模板上,使得后面的组分析更加准确,也可以得到某个脑区的一致的坐标信息。由于功能数据较为模糊,因此我们可以先将被试的结构像配准到标准模板上,再将功能像与结构像进行配准(两步配准法)。
双击Coregister (Estimate & Reslice)按钮,我们可以看到a Reference Image and a Source Image. Reference Image输入function data,Source Image输入anatomical data。
3.4 Segmentation
大脑主要由两个重要的组织组成,灰质(包含大量无髓鞘神经元)白质(有髓鞘神经元)大脑周围也充满了脑脊液,中间包含了许多脑室。
Spm中包括了6种组织,上图中从左到右依次是Grey matter; white matter; CSF; soft tissue; bone; other.将结构像的组织映射到这些组织的模板上,会增加配准的准确性。结构像不包括后面这三个组织。打开segmentation,在Volumes 中载入rsub-08_T1w.nii,将Save
Bias
Corrected中 的文件信息从 Save
Nothing 更改为 Save
Bias
Corrected
在最后一栏中将 Deformation
Fields 更改为 Forward
在tissue probability map这一栏中会自动载入spm12/tpm/TPM.nii
3.5 Normalization
当结构像被分割之后,我们可以利用分割之后的结构像进行标准化。点击Normalize (Write),→data,创建一个新的subject,在Deformation Field这一栏中载入anat文件夹中的 y_rsub-08_T1w.nii文件,在Images
to
Write 这一栏中加入头动矫正和时间层之后的数据,为了提高效率在Filters中输入^ar.* ,1:146 。默认的图像大小是2×2×2大小的高分辨率图像,我们可以更改为大小为3×3×3的图像。
!note
我们可以选择头动矫正后的结构像进行归一化,这样我们就可以看到单个被试归一化之后的结构像。
这一步完成之后,我们需要检查一下是否出错,点击Check Reg,找到w开头的功能像文件,对于第二个image,找到spm12/canonical 工作路径下的T1或者avg152T1.nii, avg305T1.nii, or single_subj_T1.nii图像,检查是否配准的好。