时间序列分析 # 平稳AR模型和MA模型的识别与定阶

  1. 掌握AR模型平稳性和MA模型可逆性的判别条件;
  2. 掌握利用序列的自相关图和偏自相关图识别模型并进行初步定阶。

原始数据在文末!!!

练习1、根据某城市过去63年中每年降雪量数据(题目1数据.txt),求:

(1)绘制该序列的时序图,并对图形做出解释,判断该序列是否平稳;

(2)判断该序列的纯随机性;

(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。

setwd("C:/Users/Administrator/Desktop/实验4/习题数据")
#读入数据并绘制时序图
data1 <- scan("题目1数据.txt")
jxl <- ts(data1)
jxl
plot(jxl)
#白噪声检验
for (i in 1:2) print(Box.test(jxl,type = "Ljung-Box",lag = 6*i))
#绘制自相关图和偏自相关图
acf(jxl)
pacf(jxl)

结果分析:

(1)时序图显示,该序列始终在常数80附近波动,且波动范围有界。无明显的趋势性或周期性。该序列是平稳序列。

(2)延迟6阶的LB统计量的P值为0.03874小于α0.05,但是延迟12阶的LB统计量的P值为0.2474大于α0.05,则拒绝原假设,认为序列不是白噪声序列。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

黎曼最初的梦想

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值