- 掌握AR模型平稳性和MA模型可逆性的判别条件;
- 掌握利用序列的自相关图和偏自相关图识别模型并进行初步定阶。
原始数据在文末!!!
练习1、根据某城市过去63年中每年降雪量数据(题目1数据.txt),求:
(1)绘制该序列的时序图,并对图形做出解释,判断该序列是否平稳;
(2)判断该序列的纯随机性;
(3)如果序列平稳且非白噪声,绘制样本自相关图(ACF)和偏自相关图(PACF),根据相关性特征,选择适当模型拟合该序列的发展。
setwd("C:/Users/Administrator/Desktop/实验4/习题数据")
#读入数据并绘制时序图
data1 <- scan("题目1数据.txt")
jxl <- ts(data1)
jxl
plot(jxl)
#白噪声检验
for (i in 1:2) print(Box.test(jxl,type = "Ljung-Box",lag = 6*i))
#绘制自相关图和偏自相关图
acf(jxl)
pacf(jxl)
结果分析:
(1)时序图显示,该序列始终在常数80附近波动,且波动范围有界。无明显的趋势性或周期性。该序列是平稳序列。
(2)延迟6阶的LB统计量的P值为0.03874小于α0.05,但是延迟12阶的LB统计量的P值为0.2474大于α0.05,则拒绝原假设,认为序列不是白噪声序列。