NNDL 作业2:第三章课后题

这篇博客探讨了线性空间中点到平面距离的证明,以及Logistic回归中为何不适用平方损失函数。平方损失在sigmoid函数近似平坦时导致梯度接近零,不利于参数优化。相比之下,交叉熵损失函数能更好地适应sigmoid激活函数,特别是在处理分类问题时。此外,还讨论了Softmax回归中正则化项的影响,正则化有助于防止过拟合,通过调整权重更新规则限制参数过大。
摘要由CSDN通过智能技术生成

【习题3-2】:在线性空间中证明一个点x到平面f(x;w)=w^{T}x+b=0的距离为\left | f(x;w) \right |/\left \| w \right \|.

证明:设平面内有一点x'使得x-x^{'}垂直于此平面,又因为w垂直于此平面,所以有x-x^{'}平行于w即x-x^{'}=kw(k为常数)

因此点x到平面的距离\left | k \right |\left \| w \right \|

w^{T}x+b=f(x;w)

w^{T}x^{'}+b=0

所以f(x;w)=w^{T}(x-x^{'})

带入kw

f(x;w)=w^{T}kw

两边同时取模:

\left | f(x;w) \right |=\left \| w \right \|\left \| k \right \|\left \| w \right \|

\left \| k \right \|\left \| w \right \|=\frac{f(x;w)}{\left \| w \right \|}

证毕

【习题3-5】:在Logistic回归中,是否可以用\hat{y}=\sigma (w^{T}x)去逼近正确的标签y,并用平方损失(y-\hat{y})^{2}最小化来优化参数w?

答:先给出结论,在使用sigmoid为激活函数时不能使用平方损失作为loss function,效果远不如cross entropy

(1)当以平方损失作为loss function时:

L=\frac{1}{2}(\hat{y}-y)^{2}

\frac{\partial L}{\partial w}=(\hat{y}-y)\sigma ^{'}x

w=w-\eta \frac{\partial L}{\partial w}=w-\eta (\hat{y}-y)\sigma ^{'}x

由sigmoid函数图可知,横坐标较小或较大时,sigmoid函数趋于平缓,因此在大多数情况下其导数几乎为0,导致\frac{\partial L}{\partial w}几乎为0,w很难去优化。

(2)以 cross entropy 作为 loss function时:

\sigma ^{'}=\sigma .(1-\sigma )y=\sigma (w^{T}x)

L=-yln\hat{y}-(1-y)ln(1-\hat{y})

\frac{\partial L}{\partial w}=-y\frac{1}{\hat{y}}{\sigma }'x-(1-y)\frac{1}{1-\hat{y}}(-1){\sigma }'x

\frac{\partial L}{\partial w}=-\frac{y\sigma (1-\sigma )x(1-\hat{y})}{\hat{y}(1-\hat{y})}+\frac{(1-y)\hat{y}\sigma (1-\sigma )x}{\hat{y}(1-\hat{y})}

\frac{\partial L}{\partial w}=\frac{\hat{y}\sigma (1-\sigma )x-y\sigma (1-\sigma )x}{\hat{y}(1-\hat{y})}

\frac{\partial L}{\partial w}=\frac{(\hat{y}-y)\hat{y}(1-\hat{y})x}{\hat{y}(1-\hat{y})}=(\hat{y}-y)x

可以看到梯度公式中没有{\sigma }'这一项,权重受到误差(y-\hat{y})的影响,所以当误差大的时候,权重更新快,当误差小的时候,权重更新慢。这是一个很好的性质。

所以当使用sigmoid作为激活函数的时候,常用交叉熵损失函数而不是用均方误差损失函数

【习题3-6】:在Softmax回归的风险函数(公式(3.39))中,如果加上正则化项会有什么影响?

答:公式3.39:R(w)=-\frac{1}{N}\sum_{n=1}^{N}(y^{(n)})^{T}log\hat{y}^{(n)}

加入正则化后:R(w)=-\frac{1}{N}\sum_{n=1}^{N}(y^{(n)})^{T}log\hat{y}^{(n)}+\lambda W^{T}W

则:

R(w)=-\frac{1}{N}\sum_{n=1}^{N}(\hat{y}^{(n)}-y^{(n)})^{T}log\hat{y}^{(n)}+2\lambda W

更新参数时:

W=W+\alpha \frac{1}{N}\sum_{n=1}^{N}(\hat{y}^{(n)}-y^{(n)})^{T}log\hat{y}^{(n)}-2\lambda W

加入正则化后,在更新参数时每次需要减去2\lambda W,使得参数不会太大,便不会造成溢出之类的错误发生,同时也会抑制过拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值