【习题3-2】:在线性空间中证明一个点x到平面的距离为.
证明:设平面内有一点x'使得垂直于此平面,又因为w垂直于此平面,所以有平行于w即(k为常数)
因此点x到平面的距离
又
所以
带入kw
两边同时取模:
证毕
【习题3-5】:在Logistic回归中,是否可以用去逼近正确的标签y,并用平方损失最小化来优化参数w?
答:先给出结论,在使用sigmoid为激活函数时不能使用平方损失作为loss function,效果远不如cross entropy
(1)当以平方损失作为loss function时:
由sigmoid函数图可知,横坐标较小或较大时,sigmoid函数趋于平缓,因此在大多数情况下其导数几乎为0,导致几乎为0,w很难去优化。
(2)以 cross entropy 作为 loss function时:
可以看到梯度公式中没有这一项,权重受到误差的影响,所以当误差大的时候,权重更新快,当误差小的时候,权重更新慢。这是一个很好的性质。
所以当使用sigmoid作为激活函数的时候,常用交叉熵损失函数而不是用均方误差损失函数
【习题3-6】:在Softmax回归的风险函数(公式(3.39))中,如果加上正则化项会有什么影响?
答:公式3.39:
加入正则化后:
则:
更新参数时:
加入正则化后,在更新参数时每次需要减去,使得参数不会太大,便不会造成溢出之类的错误发生,同时也会抑制过拟合。