方向导数和梯度概念辨析

方向导数和梯度概念辨析

我们在学习多元函数的时候,经常会困惑于方向导数和梯度的区别以及他们的几何意义,今天让我们来一起辨析一下。

一、什么是方向导数?

定义:函数的增量
f ( x + △ x , y + △ y ) − f ( x , y ) f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x,y) f(x+x,y+y)f(x,y) P P ′ PP^{'} PP两点间的距离 ρ = ( △ x ) 2 + ( △ y ) 2 \rho =\sqrt{(\bigtriangleup x)^{2}+(\bigtriangleup y)^{2} } ρ=(x)2+(y)2 的比值,当 P ′ P^{'} P 沿l趋近于P时,如果此比的极限存在,则称这极限为函数在P 点沿l的方向导数。记作 ∂ f ∂ l \frac{\partial f}{\partial l} lf,也就是 lim ⁡ ρ → 0 △ l z ρ = lim ⁡ ρ → 0 f ( x + △ x , y + △ y ) − f ( x , y ) ρ \lim_{ \rho \to 0} \frac{\bigtriangleup l^{z} }{\rho } =\lim_{\rho \to 0} \frac{f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x,y)}{\rho } limρ0ρlz=limρ0ρf(x+x,y+y)f(x,y)

定义永远是晦涩的,如果我们来形象的类比一下,之前学到的偏导数是指当一个变量变化(例如:x、y),然后函数随着另一个固定变量的方向进行变化,偏导数就是变化的趋势。那么到这里的方向导数就是将编导数的范围扩大化,从一个变量变化到两个变量甚至多个变量同时变化,但是这个变化同样是沿着空间中的一条线l。

我们来看方向导数的几何解释就会更直观的理解:

在这里插入图片描述

如图所示,图a指xoy平面内,曲线l的投影,我们所求的 ∂ f ∂ l \frac{\partial f}{\partial l} lf方向向量图b中就是p点上方z=f(x,y)曲线沿着曲线l切线的斜率,可以这么说:方向向量是你用一把名为切线的尺子在这个曲面上来回的摩擦,而这个方向向量就是你在各个l方向各个位置,这把切线尺子的斜率。

让我们在对照着图a,引出线面的定理: ∂ f ∂ x = ∂ f ∂ x cos ⁡ α + ∂ f ∂ x β \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}\cos \alpha + \frac{\partial f}{\partial x}\beta xf=xfcosα+xfβ,其中 cos ⁡ α , cos ⁡ β \cos \alpha,\cos \beta cosα,cosβ是方向l的方向余弦。

不难理解,其实方向向量可以用x和y两个方向的偏导数进行组合来表示,证明如下:

函数可微,那么等量可以表示为: f ( x + △ x , y + △ y ) − f ( x , y ) = ∂ f ∂ x △ x + ∂ f ∂ y △ y + o ( ρ ) f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x,y)=\frac{\partial f}{\partial x} \bigtriangleup x+\frac{\partial f}{\partial y}\bigtriangleup y+o(\rho ) f(x+x,y+y)f(x,y)=xfx+yfy+o(ρ)

我们两边同时除以 ρ \rho ρ,得 f ( x + △ x , y + △ y ) − f ( x , y ) ρ = ∂ f ∂ x △ x ρ + ∂ f ∂ y △ y ρ + o ( ρ ) ρ \frac{f(x+\bigtriangleup x,y+\bigtriangleup y)-f(x,y)}{\rho }=\frac{\partial f}{\partial x}\frac{\bigtriangleup x}{\rho }+ \frac{\partial f}{\partial y}\frac{\bigtriangleup y}{\rho } +\frac{o(\rho )}{\rho } ρf(x+x,y+y)f(x,y)=xfρx+yfρy+ρo(ρ)

那么 △ x ρ \frac{\bigtriangleup x}{\rho } ρx △ y ρ \frac{\bigtriangleup y}{\rho } ρy就是 cos ⁡ α , cos ⁡ β \cos \alpha,\cos \beta cosα,cosβ所以有 ∂ f ∂ x = ∂ f ∂ x cos ⁡ α + ∂ f ∂ x β \frac{\partial f}{\partial x} = \frac{\partial f}{\partial x}\cos \alpha + \frac{\partial f}{\partial x}\beta xf=xfcosα+xfβ

warning:

1、在这里我们要继续对偏导数和沿x、y轴的方向导数进行辨析:偏导存在是比沿x、y轴的方向导数存在更高级的概念,偏导存在能推出沿x、y轴的方向导数存在,反之不行。

2、以上概念都能推到多元函数。

二、什么是梯度?

定义:设函数z = f (x, y)在平面区域 D 内具有阶连续偏导数,则对于每一点 p ( x , y ) ∈ D p(x,y)\in D p(x,y)D,都可以定出一个向量 ∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ \frac{\partial f}{\partial x} \vec{i} +\frac{\partial f}{\partial y} \vec{j} xfi +yfj ,这向量称为函数z=f(x,y)在点P(x,y)的梯度,记作 g r a d f ( x , y ) = ∂ f ∂ x i ⃗ + ∂ f ∂ y j ⃗ gradf(x,y)=\frac{\partial f}{\partial x} \vec{i} +\frac{\partial f}{\partial y} \vec{j} gradfxy=xfi +yfj

我们和方向向量进行比较,我们可以发现方向导数就是梯度乘以l方向上的单位向量。

可以这么说在梯度的方向上是方向向量取最大值的时刻,是函数值增加最快的时刻,如果用更形象的方法来比喻,
函数梯度方向和函数在这点等高线的发现的方向相同,且是从低等高线指向高等高线,而且模就是这个函数在这个法线方向的方向导数。

总结:函数在某点的梯度是这样一个向量,它的方向与取得最大方向导数的方向一致,而它的模为
方向导数的最大值.梯度的模为 ( ∂ f ∂ x ) 2 + ( ∂ f ∂ y ) 2 \sqrt{(\frac{\partial f}{\partial x})^{2}+(\frac{\partial f}{\partial y})^{2} } (xf)2+(yf)2

总结:

1、方向导数是数

2、梯度是向量

3、梯度的方向就是函数在这点增长最快的方向,以此类推,降低最快的就是梯度的反方向,变化最慢的就和梯度垂直。

最后,感谢你阅读完以上内容,你的赞是我继续记录的最大鼓励。

  • 8
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值