这里写目录标题
悬而未决之谜
✅结合能控分解思考,非奇异线性变换会不会导致某变量的可控可观性发生变化?
事实上,进行线性变换(能控/能观分解)后,状态变量的物理意义已经发生变化。
原问题我想问的意思其实是,任给一个矩阵A,可否知道每个状态是否可观/可控,应该可以用PBH判据判断【不太确定】
✅如图所示与时域结合时,传递函数是开环or闭环?
应该是对应的闭环传递函数,是直接连接输入和输出、没有反馈部分的
——但是要注意 在现控中往往没有开环/闭环概念
✅对于一般状态,给出ABC,怎么判断每个变量的能控能观性?【非上三角/下三角】
回答:就是能控能观分解呗
状态函数结构图
要点🌟
- 在每一个方框图之后加入变量x
- 如果传递函数为高阶,可以部分分式展开,则展开
-
- 若不可以,则组合设置两个状态变量,其中一个状态变量为另一状态变量的导数 x ˙ 1 \dot x_1 x˙1 或者 使用反馈结构
- 若展开后,分子还有项,则进行并联
- 如上图所示,如果出现分子分母同阶,说明动态方程中的D可能不为0,y和u可能直接相关【其实就是上面结论的推论】
举例1 传递函数有分子-改并联+传递函数高阶分母-部分分式展开
注:上面的部分也可以改成积分环节和惯性环节串联
举例2 传递函数分母无法进行部分分式展开法 组合设置两个状态变量状态变量的导数
举例3 不可部分分式展开,也可以考虑用反馈环节
举例4 所有的惯性环节都可以用反馈环节代替之【这个例子也告诉我们有常数项时,变量的选取应该放在积分后而非整个传函后】
已知传递函数求状态方程矩阵
要点
- 注意分母 s n s^n sn的最高阶前的系数是1
- 可控型(I型)和可观型(II)型互为对称
- 要掌握可控/可观/约旦阵的结构图形式
能控结构图
从输入唯一性和三个积分环节入手,确定三个变量的顺序
【 x 3 x_3 x3和输入有关,更靠近输入】
能观结构图
从输出唯一性和三个积分环节入手
【 x 3 x_3 x3和输出有关,更靠近输出】(和能控性中的完全相反)约旦标准型
根据特征值数目不同,有不同条支路并联
可控/可观/约旦阵的选取方式
- 要了解可控/可观/约旦阵的状态变量选取方式
- 能控选取方式
{ x 1 = y x 2 = y ˙ ⋮ x n = y ( n − 1 ) \left\{\begin{array}{c} x_{1}=y \\ x_{2}=\dot{y} \\ \vdots \\ x_{n}=y^{(n-1)} \end{array}\right. ⎩ ⎨ ⎧x1=yx2=y˙⋮xn=y(n−1) - 约旦选取方式
{ X 1 ( s ) = 1 s − λ 1 X 2 ( s ) ⇒ x ˙ 1 = λ 1 x 1 + x 2 X 2 ( s ) = 1 s − λ 1 X 3 ( s ) ⇒ x ˙ 2 = λ 1 x 2 + x 3 X 3 ( s ) = 1 s − λ 1 U ( s ) ⇒ x ˙ 3 = λ 1 x 3 + u X 4 ( s ) = 1 s − λ 2 U ( s ) ⇒ x ˙ 4 = λ 2 x 4 + u ⋮ X n ( s ) = 1 s − λ n − 2 U ( s ) ⇒ x ˙ n = λ n − 2 x n + u \left\{\begin{array}{c} X_{1}(s)=\frac{1}{s-\lambda_{1}} X_{2}(s) \Rightarrow \dot{x}_{1}=\lambda_{1} x_{1}+x_{2} \\\\ X_{2}(s)=\frac{1}{s-\lambda_{1}} X_{3}(s) \Rightarrow \dot{x}_{2}=\lambda_{1} x_{2}+x_{3} \\\\ X_{3}(s)=\frac{1}{s-\lambda_{1}} U(s) \Rightarrow \dot{x}_{3}=\lambda_{1} x_{3}+u \\\\ X_{4}(s)=\frac{1}{s-\lambda_{2}} U(s) \Rightarrow \dot{x}_{4}=\lambda_{2} x_{4}+u \\ \vdots \\ X_{n}(s)=\frac{1}{s-\lambda_{n-2}} U(s) \Rightarrow \dot{x}_{n}=\lambda_{n-2} x_{n}+u \end{array}\right. ⎩ ⎨ ⎧X1(s)=s−λ11X2(s)⇒x˙1=λ1x1+x2X2(s)=s−λ11X3(s)⇒x˙2=λ1x2+x3X3(s)=s−λ11U(s)⇒x˙3=λ1x3+uX4(s)=s−λ21U(s)⇒x˙4=λ2x4+u⋮Xn(s)=s−λn−21U(s)⇒x˙n=λn−2xn+u
- 能控选取方式
可控型表达式🌟🌟
可观型表达式🌟🌟
约旦/对角阵
普通对角
传递函数
矩阵类型
补充:如果发生零极点对消,且要求列写不能控不能观⚠️
分析:如果产生零极点对消,相当于对应的状态变量“消失了”。因此之前的“全1行/列”中,该状态变量对应的1可以改为0
举例:传递函数如图
约旦对角【有重根】🌟🌟
传递函数
矩阵类型
举例1 传递函数上下齐次
此时应该先提取常数项,变成分母阶次比分子高,再进行操作
注意此时的输出,需要加u的常数项倍
离散状态空间及定常方程*极大概率不考
结构图
注意把积分环节改成延迟环节
连续系统离散化
离散系统状态转移方程
举例-x(0)已知时
Q:哈工大真题的2003-九已知x(t)求x(0)怎么做?
状态转移矩阵
求解状态转移矩阵的方法
拉式变换法🌟
e A t = Φ ( t ) = L − 1 [ ( s I − A ) − 1 ] e^{A t}=\Phi(t)=L^{-1}\left[(s I-A)^{-1}\right] eAt=Φ(t)=L−1[(sI−A)−1]
对角矩阵
约旦阵
状态转移矩阵常用性质
Φ
(
t
1
)
⋅
Φ
(
t
2
)
=
Φ
(
t
1
+
t
2
)
\Phi(t_1)\cdot\Phi(t_2) = \Phi(t_1+t_2)
Φ(t1)⋅Φ(t2)=Φ(t1+t2)
齐次方程的解🌟🌟
x
(
t
)
=
Φ
(
t
)
x
0
=
e
A
t
x
0
,
t
>
=
0
x(t)=\Phi(t)x_0=e^{At}x_0, t>=0
x(t)=Φ(t)x0=eAtx0,t>=0
结合拉式变换法,用反拉式变换轻松求得答案。
e A t = Φ ( t ) = L − 1 [ ( s I − A ) − 1 ] e^{A t}=\Phi(t)=L^{-1}\left[(s I-A)^{-1}\right] eAt=Φ(t)=L−1[(sI−A)−1]【拉氏变换】
举例1 利用状态转移矩阵的一些性质
非齐次方程的解
拉式变换法【现推、不常用】
积分法【推荐掌握】🌟🌟
举例1 带输入矩阵解的时域表达式
举例2 带脉冲输入的时域表达式
第一步:求状态转移矩阵,注意拉氏反变换相关知识
第二步:状态响应,【阶跃】结合【积分】极大优化运算
传递函数阵的实现问题
题型如下图所示:
要点:判断输入输出的矩阵行列数【Tops】🌟
G m × r G_{m\times r} Gm×r
- G阵的列数r对应u输入的列数r,G阵的行数m对应y输出的行数m,绝对不变🌟
- 能控阵和能观阵实现可能有所不同:🌟
对于A阵方阵,方阵的行数=列数=- 能控-n[分母阶次]*r[传函列数];
- 能观-n[分母阶次]*m[传函行数]
- 原理还是标准型实现的原理,如果维数不够,乘对应的单位矩阵
- 注意转置时,内部的每个小矩阵不转置
- 总而言之,传递函数列少时,能控更好写;行少时,能观更好写
通解
- 提取常数使传函全都是真分式【之后常数部分作为传递函数中的矩阵 D D D】
- 提取公分母,还是按照常数、 s 1 s^1 s1、 s 2 s^2 s2升阶顺序排列
举例1 提取常数化成真分式后做题
拆分
可控
可观
能控性与能观性
能控能观判据一览🌟🌟
Way1 单输入单输出下 零极点对消必然不是“可控可观”
Way2 能控能观性判据
可控性判断:
M
=
(
B
,
A
B
,
A
2
B
,
.
.
.
,
A
n
−
1
B
)
M=(B, AB, A^2B, ..., A^{n-1}B)
M=(B,AB,A2B,...,An−1B)
可观性判断:
N
=
(
C
,
C
A
,
C
A
2
,
.
.
.
,
C
A
n
−
1
)
T
N=(C, CA, CA^2, ..., CA^{n-1})^T
N=(C,CA,CA2,...,CAn−1)T
Way3 对角阵/约旦阵
可控,同约旦块看最后一行B,可观看第一列C
相同特征值的不同约旦块之间需要线性无关才能保证可控/可观
Way4 PBH判据
变可控标准型🌟🌟
前提条件:系统能控
做题经验:求出特征值后,A可以由特征方程的系数得到而不用求
T
c
T_c
Tc;但是求C要费点劲(结合变换矩阵T)
【没有
a
0
a_0
a0项】
举例 求一般矩阵(可控)的能控标准型
能控分解🌟🌟
其中,
R
c
R_c
Rc的前
n
1
n_1
n1列,是判别矩阵M中的任意线性无关的
n
1
n_1
n1列,剩下的列任取,保证
R
c
R_c
Rc可逆即可
这里的可控针对的是变换后的状态变量,和原来的
变可观标准型🌟🌟
前提条件:系统能观
做题经验:求出特征值后,A可以由特征方程的系数得到而不用求T;但是求B要费点劲(结合变换矩阵
T
0
−
1
T_0^{-1}
T0−1)
![在这里插入图片描述](https://img-blog.csdnimg.cn/8cf98344f7c443499d9062b0222b89a6.png =50 0x)
举例 求一般矩阵(可观)的能观标准型
能观分解🌟🌟
其中,
R
o
−
1
R_o^{-1}
Ro−1的前
n
1
n_1
n1行,是判别矩阵M中的任意线性无关的
n
1
n_1
n1行,剩下的行任取,保证
R
o
R_o
Ro可逆即可
举例1 进行能控+能观分解,即最小实现问题【较难,注意第二步线性变换的方式】
- 思路
相当于对系统进行能控性(能观性)分解后,再分别对两个部分进行能观性(能控性)分解
例题
- 能控性分解
- 对能控部分进行能观性分解
补充说明:如果能观性分解后,能控不能观的部分是一维的,即一个数【如本题】,那就看做“输入u”,直接左乘变换矩阵 R − 1 R^{-1} R−1,不需要右乘R
【上面截图最后一行出错了】
Q 如果传递函数有零极点对消,那么一定不是最小实现
线性变换
基础知识🌟
线性变换的公式
要求:变换矩阵T非奇异
推导过程
线性变换性质
传递函数不变、特征值不变、系统【注意,是系统不是矩阵A】的可控可观性不变
变为对角阵(A可进行相似对角化)
对应:特征值无重根的情况
方法:找特征向量进行相似对角化
相似对角化中一个特例:A阵为友矩阵(仍要满足特征值无重根)
矩阵
对应变换公式
变为约旦阵(特征值有重根且A不可进行相似对角化)🌟
同样的特例:友矩阵
举例1 线性变换后求可观性✅
经判断,A是友矩阵,线性变换为范德蒙德行列式
线性定常系统反馈问题
状态反馈【题目多,灵活】
结构图【反馈到输入后,B前】
求解方法【官方,规范,必须遵守】✨
- 判断系统是否满足能控性
- 列写反馈后的系统多项式【A+bK:正反馈 或者 A-bK:负反馈】其中K是1xm维未知向量
- 比较期望特征多项式和带参数的特征多项式的各项系数
绘图示例
技巧方法🌟【⚠️本方法只适用于A为能控标准型情况】【状态观测器中该技巧对偶存在】
注意,k的下标和s前的系数是一致的,状态反馈后系统零点未改变
在此方法下…
在此方法下,分母就是特征多项式,分子不变,因为状态反馈不改变系统零点
举例1 状态反馈+结构图
举例2 状态反馈+反馈后可观性
举例3 状态反馈+结构图&零极点对消
输出反馈*【考察的不多】
结构图【往往用下面的,反馈到状态变量导数前,B后】
求解方法【官方,规范,必须遵守】✨
- 判断系统是否满足能观性
- 列写反馈后的系统多项式【A+Gc:正反馈 或者 A-Gc:负反馈】其中G是rx1维未知向量
- 比较期望特征多项式和带参数的特征多项式的各项系数
系统镇定【套路固定】
求解方法
进行能控分解后,系统镇定的充要条件是不可控部分特征值为负,因此基本套路如下:
- 能控分解,判断不能控部分特征方程是否均具有负实部
- 能控部分进行极点配置【随便配置,能控部分满足条件即可,不能控部分系数任意】
- ✨✨将能控部分的状态反馈系数K‘转为原系统的状态反馈系数K(右乘
T
c
−
1
T_c^{-1}
Tc−1)
转换方法如下
类似地,输出反馈的话是左乘 ( T o − 1 ) − 1 (T_o^{-1})^{-1} (To−1)−1【都是对:能直接得到的矩阵 求逆,一个是左乘,一个是右乘】
求解方法② 利用PBH判据*非主流
参考上面的可控性判断,主流方法是判断不可控的部分是否稳定,这个是判断不稳定的部分是否可控
举例1 系统镇定+能控分解后的状态反馈向原状态反馈的转变🌟🌟✨
-
能控分解
-
状态反馈配置可控部分
-
将能控分解矩阵对应的反馈系数 K K K转为线性变换前反馈系数 K 0 K_0 K0
解耦*【从未考察】
求解方法
纯粹就是套模板
- 判断每一个输入对应的di
- 代公式
- 判别
状态观测问题
全维状态观测
结构图示意
本质上是状态反馈
✨✨另一种表述
举例1 全维观测器+列写观测器方程
举例2 状态观测器(输出反馈)+状态反馈
设计观测器和进行状态反馈实际上是完全分开的
- 设计观测器
- 设计状态反馈【可以考虑使用技巧方法】
- 模型类似于下图:
动态方程:
两种模型
全维状态观测器的误差求解
举例【实质上是齐次方程求解问题】
注意最后一步取了一个模长
一个结论:极点距离虚轴越远,趋于稳定的速度越快,调节时间也就越快。
降维观测器
原理是利用通过调整输出对应的输出矩阵,可以获得一部分状态变量的观测值,从而减小传感器的数量等等。
Step01 设计 T − 1 T^{-1} T−1,线性变换将输出矩阵调整成(0,0,I)形式
类似能观分解,能观分解中的矩阵选择,都是“一部分取原来的,一部分保证非奇异”
区别在于,可观分解是判据阵 前m-1行,这个是输出阵 后m行
T
−
1
T^{-1}
T−1满足以下要求:最后m行为原输出矩阵C,上面的其他行任取,保证非奇异即可
然后以T为非奇异线性变换矩阵,进行线性变换
通常情况下,对输出y相关变量进行矩阵操作时,往往直接得到的是逆
完成线性变换后,可将A矩阵视为 A 11 ‾ , A 12 ‾ , A 21 ‾ , A 22 ‾ \overline{A_{11}},\overline{A_{12}},\overline{A_{21}},\overline{A_{22}} A11,A12,A21,A22【加横线代表和之前不一样】
Step02 设计降维状态观测器
按照
A
11
,
A
21
A_{11},A_{21}
A11,A21进行极点配置
f
(
λ
)
=
det
(
λ
I
−
(
A
11
‾
−
G
A
21
‾
)
)
f
∗
(
λ
)
=
(
λ
−
s
1
)
(
λ
−
s
2
)
.
.
.
(
λ
−
s
n
)
\begin{array}{l} f(\lambda)=\operatorname{det}\left(\lambda I-\left(\overline{A_{11}} -G\overline{A_{21}}\right)\right) \\ f^{*}(\lambda)=(\lambda-s_1)(\lambda-s_2)...(\lambda-s_n) \end{array}
f(λ)=det(λI−(A11−GA21))f∗(λ)=(λ−s1)(λ−s2)...(λ−sn)
Step03 套公式🌟🌟
这么做的原因是,原来的表达式里存在 y ˙ \dot y y˙,不好求解
Step04 变回原有系统
上一步结果左乘
T
T
T
x
^
=
T
x
‾
^
\hat {x} = T \hat{ \overline{ x}}
x^=Tx^
举例1 降维观测器经典例题
Step01 能观性判断+变换矩阵设计
Step02 设计降维观测器
Step03 代入两个公式
Step04 线性变换变回去
不熟练公式记录
状态方程非齐次求解【积分形式】
状态方程齐次求解和
e
A
t
e^{At}
eAt表达式书写
一般矩阵化能控标准型