第二节 《轻松玩转书生·浦语大模型趣味 Demo》

本文介绍了书生·浦语大模型的角色扮演SIG实战教程,涵盖部署InternLM2-Chat模型进行对话、使用Lagent运行7B模型进行图文创作和视觉问答,以及基础和进阶作业,如生成小故事和下载config文件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


本节是《轻松玩转书生·浦语大模型趣味 Demo》的第二节课,包括课堂笔记和课后作业

课堂笔记


书生浦语大模型SIG(Special Interest Groups,特别兴趣小组)包括角色扮演SIG,Agent SIG等,本节课是角色扮演SIG实战教程

在这里插入图片描述

第一个实战任务是部署InternLM2-Chat-1.8B模型进行智能对话

在这里插入图片描述
第二个实战任务是部署八戒-Chat-1.8B模型

在这里插入图片描述
第三个实战任务是使用Lagent运行InternLM2-Chat-7B模型

在这里插入图片描述
第四个实战任务是实践部署浦语-灵笔2模型


图文写作实战

在这里插入图片描述
图片理解实战

在这里插入图片描述

课后作业

基础作业


使用 InternLM2-Chat-1.8B 模型生成 300 字的小故事

在这里插入图片描述

进阶作业

使用 huggingface_hub python 包,下载 InternLM2-Chat-7B 的 config.json 文件到本地


安装huggingface_hub

在这里插入图片描述

执行结果

在这里插入图片描述


config.json文件内容(windows下huggingface_hub 默认下载位置在~/.cache/huggingface)

在这里插入图片描述

使用 Lagent 运行 InternLM2-Chat-7B 模型为内核的智能体


配置基础环境

在这里插入图片描述
运行结果

在这里插入图片描述

浦语·灵笔2 的 图文创作 及 视觉问答 部署

图文写作实战


第一段提示词为:
根据以下标题:“中国水墨画:流动的诗意与东方美学”,创作长文章,字数不少于800字。请结合以下文本素材:
“水墨画是由水和墨调配成不同深浅的墨色所画出的画,是绘画的一种形式,更多时候,水墨画被视为中国传统绘画,也就是国画的代表。也称国画,中国画。墨水画是中国传统画之一。墨水是国画的起源,以笔墨运用的技法基础画成墨水画。线条中锋笔,侧锋笔,顺锋和逆锋,点染,擦,破墨,拨墨的技法。墨于水的变化分为五色。画成作品,题款,盖章。就是完整的墨水画作品。
基本的水墨画,仅有水与墨,黑与白色,但进阶的水墨画,也有工笔花鸟画,色彩缤纷。后者有时也称为彩墨画。在中国画中,以中国画特有的材料之一,墨为主要原料加以清水的多少引为浓墨、淡墨、干墨、湿墨、焦墨等,画出不同浓淡(黑、白、灰)层次。别有一番韵味称为“墨韵”。而形成水墨为主的一种绘画形式。”

运行结果:

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
第二段提示词为:

请结合以下文本素材,创作长文章,不少于800字:“油画是由油和颜料调配成不同色彩所画出的画,是绘画的一种形式,更多时候,油画被视为西方传统绘画的代表。油画起源于欧洲,早在古希腊和罗马时期,就已经有了用油调和颜料进行绘画的技艺。但真正意义上的油画是在15世纪初期,由荷兰画家杨·凡·艾克发扬光大的。他以精湛的技艺和独特的表现手法,使油画成为西方绘画的主流。
油画的基本技法包括:线条画、涂抹、晕染、刮刀等。线条画是通过画笔的笔触和线条来表现物象的轮廓和结构;涂抹则是通过画笔的平涂和渲染来表现物象的质感和光影;晕染是通过色彩的渐变和混合来表现物象的空间感和立体感;刮刀则是通过刀刃的刮、擦、堆等手法来表现物象的肌理和厚重感。
油画的色彩丰富多样,既有明亮的色调,也有深沉的色调。色彩的运用是油画的灵魂,画家通过色彩的对比、搭配和调和,可以表现出不同的情感和氛围。在油画中,色彩的变化分为冷暖、明暗、纯度等。画成作品,题款,盖章,就是完整的油画作品。
基本的油画,仅有油与颜料,但进阶的油画,也有细腻的肖像画,生动的人物画,壮丽的风景画等。后者有时也称为彩油画。在油画中,以油画特有的材料之一,油为主要原料加以颜料的多少引为厚涂、薄涂、干画、湿画等,画出不同浓淡(黑、白、灰)层次。别有一番韵味称为“油韵”。而形成油画为主的一种绘画形式。
油画的发展历程中,涌现出了许多著名的画家和流派。如文艺复兴时期的达芬奇、米开朗基罗,巴洛克时期的鲁本斯、伦勃朗,印象派时期的莫奈、雷诺阿等。他们的作品各具特色,为油画艺术的发展做出了巨大贡献。
随着时代的发展,油画也在不断创新和变革。现代油画更加注重画面的构成和色彩的表达,强调画家的个性和情感。画家们通过丰富的想象力和创造力,使油画艺术更加多元化和个性化。
总之,油画是一种具有深厚文化底蕴和独特艺术魅力的绘画形式。它以丰富的色彩、多样的技法和广阔的表现空间,吸引了无数画家和艺术爱好者。相信在未来的发展中,油画艺术一定能够不断创新,为我们带来更多的视觉盛宴和心灵震撼。”

创作结果如下:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

图片理解实战


图片1

在这里插入图片描述
图片2

在这里插入图片描述

参考文献


最后,感谢官方提供的资源

本小节官方文字教程地址: 文字教程
视频教程地址:视频教程

### RT-DETRv3 网络结构分析 RT-DETRv3 是一种基于 Transformer 的实时端到端目标检测算法,其核心在于通过引入分层密集正监督方法以及一系列创新性的训练策略,解决了传统 DETR 模型收敛慢和解码器训练不足的问题。以下是 RT-DETRv3 的主要网络结构特点: #### 1. **基于 CNN 的辅助分支** 为了增强编码器的特征表示能力,RT-DETRv3 引入了一个基于卷积神经网络 (CNN) 的辅助分支[^3]。这一分支提供了密集的监督信号,能够与原始解码器协同工作,从而提升整体性能。 ```python class AuxiliaryBranch(nn.Module): def __init__(self, in_channels, out_channels): super(AuxiliaryBranch, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn = nn.BatchNorm2d(out_channels) def forward(self, x): return F.relu(self.bn(self.conv(x))) ``` 此部分的设计灵感来源于传统的 CNN 架构,例如 YOLO 系列中的 CSPNet 和 PAN 结构[^2],这些技术被用来优化特征提取效率并减少计算开销。 --- #### 2. **自注意力扰动学习策略** 为解决解码器训练不足的问题,RT-DETRv3 提出了一种名为 *self-att 扰动* 的新学习策略。这种策略通过对多个查询组中阳性样本的标签分配进行多样化处理,有效增加了阳例的数量,进而提高了模型的学习能力和泛化性能。 具体实现方式是在训练过程中动态调整注意力权重分布,确保更多的高质量查询可以与真实标注 (Ground Truth) 进行匹配。 --- #### 3. **共享权重解编码器分支** 除了上述改进外,RT-DETRv3 还引入了一个共享权重的解编码器分支,专门用于提供密集的正向监督信号。这一设计不仅简化了模型架构,还显著降低了参数量和推理时间,使其更适合实时应用需求。 ```python class SharedDecoderEncoder(nn.Module): def __init__(self, d_model, nhead, num_layers): super(SharedDecoderEncoder, self).__init__() decoder_layer = nn.TransformerDecoderLayer(d_model=d_model, nhead=nhead) self.decoder = nn.TransformerDecoder(decoder_layer, num_layers=num_layers) def forward(self, tgt, memory): return self.decoder(tgt=tgt, memory=memory) ``` 通过这种方式,RT-DETRv3 实现了高效的目标检测流程,在保持高精度的同时大幅缩短了推理延迟。 --- #### 4. **与其他模型的关系** 值得一提的是,RT-DETRv3 并未完全抛弃经典的 CNN 技术,而是将其与 Transformer 结合起来形成混合架构[^4]。例如,它采用了 YOLO 系列中的 RepNCSP 模块替代冗余的多尺度自注意力层,从而减少了不必要的计算负担。 此外,RT-DETRv3 还借鉴了 DETR 的一对一匹配策略,并在此基础上进行了优化,进一步提升了小目标检测的能力。 --- ### 总结 综上所述,RT-DETRv3 的网络结构主要包括以下几个关键组件:基于 CNN 的辅助分支、自注意力扰动学习策略、共享权重解编码器分支以及混合编码器设计。这些技术创新共同推动了实时目标检测领域的发展,使其在复杂场景下的表现更加出色。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值