大模型时代智能生产调度AI系统架构:架构师探索LLM与调度算法结合新范式
1. 引入:当老调度员遇到新问题——生产调度的"不确定性危机"
凌晨3点,某汽车零部件工厂的调度室依然亮着灯。资深调度员老张盯着屏幕上的红色警报,额角渗出细汗:
- 半小时前,关键机床M1突然报故障,需要停机维修4小时;
- 10分钟前,大客户紧急追加1000件订单,要求明天上午10点前交货;
- 现在,系统提示"工人小李因突发感冒请假",而他负责的工序没有替补人员。
老张揉了揉眼睛——这已经是这个月第5次应对此类"黑天鹅"事件。传统的ERP系统还停留在"按计划排产"的逻辑,面对这些动态约束、模糊需求、跨环节依赖的问题,根本无力应对。他打开Excel,开始手动调整工单:先把M1的任务转移到M3,再把小李的工序分给小王,还要计算追加订单的物料是否足够…整个过程像在解一道不断变化的魔方,稍有不慎就会导致交期延误或资源浪费。
这不是老张一个人的困境。根据《2023年制造业生产调度痛点调研报告》,78%的制造企业仍依赖"人工+传统系统"的调度模式,面对以下挑战几乎无解:
- 非结构化信息处理难:工人的语音报告、客户的自然语言需求、设备的异常日志等无法被传统系统解析;
- 动态环境适应性差:机器故障、订单变更、人员缺勤等突发情况需要重新建模,耗时久;
- 复杂约束协同难

订阅专栏 解锁全文
684

被折叠的 条评论
为什么被折叠?



