【机器人动力学】——运动和受力的描述

【机器人动力学】——运动和受力的描述

一、运动的描述

  1. 速度:位置向量的微分

B V Q = d d t B P Q = lim ⁡ Δ t → 0 B P Q ( t + Δ t ) − B P Q ( t ) Δ t {}^BV_Q=\frac{d}{dt}{}^BP_Q=\lim_{\Delta t\to0}\frac{^BP_Q(t+\Delta t)-^BP_Q(t)}{\Delta t} BVQ=dtdBPQ=Δt0limΔtBPQ(t+Δt)BPQ(t)

  • 注意其是在哪个坐标系下的表达。
  1. 角速度 3 × 1 3\times1 3×1的向量

    若单位向量 e ^ ( t ) \hat e(t) e^(t)相对于转轴 ω → \overrightarrow \omega ω (相对于世界坐标系)旋转,则:
    e ^ ˙ = ω → × e ^ \dot{\hat e}=\overrightarrow \omega \times \hat e e^˙=ω ×e^
    在这里插入图片描述

  • 注意1:这里的结论只针对单位向量成立,对于一般向量不成立(长度改变)!
  • 注意2:一般这个式子最后都会写成在世界坐标系下的表达。

二、刚体的运动

  1. 位置向量的分解
    在这里插入图片描述
    r A → = x A I ^ + y A J ^ = r B → + r A / B → = ( x B I ^ + y B J ^ ) + ( x A / B I ^ + y A / B J ^ ) = ( x B I ^ + y B J ^ ) + ( x A / B i ^ + y A / B j ^ ) \begin{aligned} \overrightarrow{r_{A}}&=x_{A}\hat{I}+y_{A}\hat{J}\\ &=\overrightarrow{\mathrm{r}_{B}}+\overrightarrow{\mathrm{r}_{A/B}} \\ &=(\mathrm{x}_{B}\hat{I}+\mathrm{y}_{B}\hat{J})+(\mathrm{x}_{A/B}\hat{I}+\mathrm{y}_{A/B}\hat{J}) \\ &=(\mathrm{x}_{B}\hat{I}+\mathrm{y}_{B}\hat{J})+(x_{A/B}\hat{i}+y_{A/B}\hat{j}) \end{aligned} rA =xAI^+yAJ^=rB +rA/B =(xBI^+yBJ^)+(xA/BI^+yA/BJ^)=(xBI^+yBJ^)+(xA/Bi^+yA/Bj^)
  • 注意1:这里的 x x x x \mathrm{x} x分别代表在ijk和IJK坐标系下的表达。
  1. 速度的分解

    若ijk坐标系相对于IJK有转动,对上式进行微分,有:

v A → = r B → ˙ I ^ + r A / B → ˙ J ^ = ( x B ˙ I ^ + y B ˙ J ^ ) + ( x A / B ˙ i ^ + y A / B ˙ j ^ ) + ( x A / B i ^ ˙ + y A / B j ^ ˙ ) = ( x B ˙ I ^ + y B ˙ J ^ ) + ( x A / B ˙ i ^ + y A / B ˙ j ^ ) + [ x A / B ( ω → × i ^ ) + y A / B ( ω → × j ^ ) ] = ( x B ˙ I ^ + y B ˙ J ^ ) + ( x A / B ˙ i ^ + y A / B ˙ j ^ ) + [ x A / B ( ω → × I ^ ) + y A / B ( ω → × J ^ ) ] \begin{aligned} \overrightarrow{v_{A}}&=\dot{\overrightarrow{r_{B}}}\hat{I}+\dot{\overrightarrow{r_{A/B}}}\hat{J}\\ &=(\dot{\mathrm{x}_{B}}\hat{I}+\dot{\mathrm{y}_{B}}\hat{J})+(\dot{x_{A/B}}\hat{i}+\dot{y_{A/B}}\hat{j})+(x_{A/B}\dot{\hat{i}}+y_{A/B}\dot{\hat{j}})\\ &=(\dot{\mathrm{x}_{B}}\hat{I}+\dot{\mathrm{y}_{B}}\hat{J})+(\dot{x_{A/B}}\hat{i}+\dot{y_{A/B}}\hat{j})+[x_{A/B}(\overrightarrow \omega \times \hat{i})+y_{A/B}(\overrightarrow \omega \times \hat{j})]\\ &=(\dot{\mathrm{x}_{B}}\hat{I}+\dot{\mathrm{y}_{B}}\hat{J})+(\dot{x_{A/B}}\hat{i}+\dot{y_{A/B}}\hat{j})+[\mathrm{x}_{A/B}(\overrightarrow \omega \times \hat{I})+\mathrm{y}_{A/B}(\overrightarrow \omega \times \hat{J})] \end{aligned} vA =rB ˙I^+rA/B ˙J^=(xB˙I^+yB˙J^)+(xA/B˙i^+yA/B˙j^)+(xA/Bi^˙+yA/Bj^˙)=(xB˙I^+yB˙J^)+(xA/B˙i^+yA/B˙j^)+[xA/B(ω ×i^)+yA/B(ω ×j^)]=(xB˙I^+yB˙J^)+(xA/B˙i^+yA/B˙j^)+[xA/B(ω ×I^)+yA/B(ω ×J^)]

  • 注意1:一般,都写作在世界坐标系下的表达。
    在这里插入图片描述

    上式,利用机器人学的表达可以写作:

A V Q = A V B + B A R B V Q + A Ω B × ( B A R B P Q ) {}^AV_Q={}^AV_B+{}^A_BR{}^BV_Q+{}^A\Omega_B\times({}^A_BR{}^BP_Q) AVQ=AVB+BARBVQ+AΩB×(BARBPQ)

三、连杆系统下的表达

在这里插入图片描述

(一)i+1相对于i有转动的情况:

  1. 连杆系统下的角速度

    i坐标系看,有:
    i ω i + 1 = i ω i + i + 1 i R ( θ ˙ i + 1 Z ^ i + 1 ) {}^i\omega_{i+1}={}^i\omega_{i}+{}^i_{i+1}R(\dot\theta_{i+1}\hat Z_{i+1}) iωi+1=iωi+i+1iR(θ˙i+1Z^i+1)

    含义是:本身旋转加上i+1的旋转。

  • 注意1: 转到i+1坐标系下的表达,只需要乘上变换矩阵即可。
  1. 连杆系统下的线速度

    i坐标系看,有:
    i v i + 1 = i v i + i ω i × i P i + 1 {}^iv_{i+1}={}^iv_i+{}^i\omega_i\times{}^iP_{i+1} ivi+1=ivi+iωi×iPi+1

    含义是:本身的速度加上,转动引起的附加速度。

(二)i+1相对于i有移动的情况:

  1. 连杆系统下的角速度

    i坐标系看,有:
    i ω i + 1 = i ω i {}^i\omega_{i+1}={}^i\omega_{i} iωi+1=iωi

  2. 连杆系统下的线速度

    i坐标系看,有:
    i v i + 1 = ( i v i + i ω i × i P i + 1 ) + i R i + 1 ( d ˙ i + 1 Z ^ i + 1 ) {}^iv_{i+1}=({}^iv_{i}+{}^i\omega_i\times{}^iP_{i+1})+{}^iR_{i+1}(\dot d_{i+1}\hat Z_{i+1}) ivi+1=(ivi+iωi×iPi+1)+iRi+1(d˙i+1Z^i+1)

四、力和力矩

  • 注意1:对于速度和角速度来说,是从首端向末端算。但对于力和力矩而言,恰恰相反,是从末端向首端算的。

i f i = i f i + 1 = i + 1 i R i + 1 f i + 1 i n i = i n i + 1 + i P i + 1 × i f i + 1 = i + 1 i R i + 1 n i + 1 + i + 1 P × i f i + 1 \begin{aligned} {}^if_i&={}^if_{i+1}={}^i_{i+1}R{}^{i+1}f_{i+1}\\ \\ {}^in_i&={}^in_{i+1}+{}^iP_{i+1}\times{}^if_{i+1}\\&={}^i_{i+1}R{}^{i+1}n_{i+1}+{}^P_{i+1}\times{}^if_{i+1} \end{aligned} ifiini=ifi+1=i+1iRi+1fi+1=ini+1+iPi+1×ifi+1=i+1iRi+1ni+1+i+1P×ifi+1

  • 注意2:在叉乘 × \times ×运算中,往往利用反对称矩阵的形式简化计算:

P × R = [ 0 − p z p y p z 0 − p x − p y p x 0 ] R P\times R=\begin{bmatrix} 0 & -p_z & p_y \\ p_z & 0 & -p_x \\ -p_y & p_x & 0 \end{bmatrix}R P×R= 0pzpypz0pxpypx0 R

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值