【机器人动力学】——转动惯量
一、质量分布
- 转动惯量的定义:
A
I
=
[
I
x
x
−
I
x
y
−
I
x
z
−
I
x
y
I
y
y
−
I
y
z
−
I
x
z
−
I
y
z
I
z
z
]
^AI= \begin{bmatrix} I_{xx} & & -I_{xy} & & -I_{xz} \\ -I_{xy} & & I_{yy} & & -I_{yz} \\ -I_{xz} & & -I_{yz} & & I_{zz} \end{bmatrix}
AI=
Ixx−Ixy−Ixz−IxyIyy−Iyz−Ixz−IyzIzz
其中,对角线上的三个量是常提到的转动惯量,可由下式计算:
I
x
x
=
∭
V
(
y
2
+
z
2
)
ρ
d
v
I
z
z
=
∭
V
(
x
2
+
y
2
)
ρ
d
v
I
y
y
=
∭
V
(
x
2
+
z
2
)
ρ
d
v
\begin{aligned} I_{xx}&=\iiint_{V}(y^{2}+z^{2})\rho dv\\ I_{zz}&=\iiint_{V}(x^{2}+y^{2})\rho dv\\ I_{yy}&=\iiint_{V}(x^{2}+z^{2})\rho dv\\ \end{aligned}
IxxIzzIyy=∭V(y2+z2)ρdv=∭V(x2+y2)ρdv=∭V(x2+z2)ρdv
而其他的项是由物体的不对称性产生的,对称物体这些项=0:
I
x
z
=
∭
V
x
z
ρ
d
v
I
x
y
=
∭
V
x
y
ρ
d
v
I
y
z
=
∭
V
y
z
ρ
d
v
\begin{aligned}I_{xz}&=\iiint_{V}xz\rho dv\\ I_{xy}&=\iiint_{V}xy\rho dv\\ I_{yz}&=\iiint_{V}yz\rho dv\end{aligned}
IxzIxyIyz=∭Vxzρdv=∭Vxyρdv=∭Vyzρdv
-
转动惯量的性质:
对任意一个转动惯量,对其正交对角化(常对称矩阵),利用eigendecomposition:
A I = [ I x x − I x y − I x z − I x y I y y − I y z − I x z − I y z I z z ] = R [ I X X 0 0 0 I Y Y 0 0 0 I Z Z ] R T {}^AI = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} = R \begin{bmatrix} I_{XX} & 0 & 0 \\ 0 & I_{YY} & 0 \\ 0 & 0 & I_{ZZ} \end{bmatrix} R^T AI= Ixx−Ixy−Ixz−IxyIyy−Iyz−Ixz−IyzIzz =R IXX000IYY000IZZ RT其含义相当于任意形状的刚体,都能找到一个旋转轴使其新转动惯量矩阵为实对称矩阵。
此外,还可以由上式推导出:
I x x + I y y + I z z = t r a c e ( A I ) = I X X + I Y Y + I Z Z = c o n s t I_{xx}+I_{yy}+I_{zz}=trace({}^AI)=I_{XX}+I_{YY}+I_{ZZ}=const Ixx+Iyy+Izz=trace(AI)=IXX+IYY+IZZ=const
- 注意1:如果刚体关于xy-plane对称,那么 I x z = I y z = 0 I_{xz}=I_{yz}=0 Ixz=Iyz=0
-
平行轴定理:计算转动惯量的时候需要旋转轴
如果我们知道刚体在质心处的转动惯量,想计算空间中任意一点处不同转轴的转动惯量:
A I z z = C I z z + m ( x c 2 + y c 2 ) A I x y = C I x y − m x c y c \begin{aligned}{}^AI_{zz}&={}^CI_{zz}+m(x_c^2+y_c^2)\\ {}^AI_{xy}&={}^CI_{xy}-mx_cy_c\end{aligned} AIzzAIxy=CIzz+m(xc2+yc2)=CIxy−mxcyc若已知两转轴之间的相对位移 P C = [ x c , y c , z c ] T P_C=[x_c,y_c,z_c]^T PC=[xc,yc,zc]T,写成矩阵形式:
A I = C I + m [ P c T P c I 3 − P c P c T ] {}^AI={}^CI+m[P_c^TP_cI_3-P_cP_c^T] AI=CI+m[PcTPcI3−PcPcT]其实际意义可以想象一根均匀的木棒:绕质心旋转时,转动惯量较小。而绕一端旋转时,转动惯量会增大,增大的部分就是 m d 2 md^2 md2 ,其中 d d d是质心到旋转端的距离。