【机器人动力学】——转动惯量

【机器人动力学】——转动惯量

一、质量分布

  1. 转动惯量的定义
    在这里插入图片描述

A I = [ I x x − I x y − I x z − I x y I y y − I y z − I x z − I y z I z z ] ^AI= \begin{bmatrix} I_{xx} & & -I_{xy} & & -I_{xz} \\ -I_{xy} & & I_{yy} & & -I_{yz} \\ -I_{xz} & & -I_{yz} & & I_{zz} \end{bmatrix} AI= IxxIxyIxzIxyIyyIyzIxzIyzIzz
其中,对角线上的三个量是常提到的转动惯量,可由下式计算:
I x x = ∭ V ( y 2 + z 2 ) ρ d v I z z = ∭ V ( x 2 + y 2 ) ρ d v I y y = ∭ V ( x 2 + z 2 ) ρ d v \begin{aligned} I_{xx}&=\iiint_{V}(y^{2}+z^{2})\rho dv\\ I_{zz}&=\iiint_{V}(x^{2}+y^{2})\rho dv\\ I_{yy}&=\iiint_{V}(x^{2}+z^{2})\rho dv\\ \end{aligned} IxxIzzIyy=V(y2+z2)ρdv=V(x2+y2)ρdv=V(x2+z2)ρdv
而其他的项是由物体的不对称性产生的,对称物体这些项=0:
I x z = ∭ V x z ρ d v I x y = ∭ V x y ρ d v I y z = ∭ V y z ρ d v \begin{aligned}I_{xz}&=\iiint_{V}xz\rho dv\\ I_{xy}&=\iiint_{V}xy\rho dv\\ I_{yz}&=\iiint_{V}yz\rho dv\end{aligned} IxzIxyIyz=Vxzρdv=Vxyρdv=Vyzρdv

  1. 转动惯量的性质

    对任意一个转动惯量,对其正交对角化(常对称矩阵),利用eigendecomposition:
    A I = [ I x x − I x y − I x z − I x y I y y − I y z − I x z − I y z I z z ] = R [ I X X 0 0 0 I Y Y 0 0 0 I Z Z ] R T {}^AI = \begin{bmatrix} I_{xx} & -I_{xy} & -I_{xz} \\ -I_{xy} & I_{yy} & -I_{yz} \\ -I_{xz} & -I_{yz} & I_{zz} \end{bmatrix} = R \begin{bmatrix} I_{XX} & 0 & 0 \\ 0 & I_{YY} & 0 \\ 0 & 0 & I_{ZZ} \end{bmatrix} R^T AI= IxxIxyIxzIxyIyyIyzIxzIyzIzz =R IXX000IYY000IZZ RT

    其含义相当于任意形状的刚体,都能找到一个旋转轴使其新转动惯量矩阵为实对称矩阵。
    此外,还可以由上式推导出:
    I x x + I y y + I z z = t r a c e ( A I ) = I X X + I Y Y + I Z Z = c o n s t I_{xx}+I_{yy}+I_{zz}=trace({}^AI)=I_{XX}+I_{YY}+I_{ZZ}=const Ixx+Iyy+Izz=trace(AI)=IXX+IYY+IZZ=const

  • 注意1:如果刚体关于xy-plane对称,那么 I x z = I y z = 0 I_{xz}=I_{yz}=0 Ixz=Iyz=0
  1. 平行轴定理:计算转动惯量的时候需要旋转轴

    如果我们知道刚体在质心处的转动惯量,想计算空间中任意一点处不同转轴的转动惯量:
    A I z z = C I z z + m ( x c 2 + y c 2 ) A I x y = C I x y − m x c y c \begin{aligned}{}^AI_{zz}&={}^CI_{zz}+m(x_c^2+y_c^2)\\ {}^AI_{xy}&={}^CI_{xy}-mx_cy_c\end{aligned} AIzzAIxy=CIzz+m(xc2+yc2)=CIxymxcyc

    若已知两转轴之间的相对位移 P C = [ x c , y c , z c ] T P_C=[x_c,y_c,z_c]^T PC=[xc,yc,zc]T,写成矩阵形式:
    A I = C I + m [ P c T P c I 3 − P c P c T ] {}^AI={}^CI+m[P_c^TP_cI_3-P_cP_c^T] AI=CI+m[PcTPcI3PcPcT]

    其实际意义可以想象一根均匀的木棒:绕质心旋转时,转动惯量较小。而绕一端旋转时,转动惯量会增大,增大的部分就是 m d 2 md^2 md2 ,其中 d d d是质心到旋转端的距离。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值