【最优控制笔记】——1静态优化

1.静态优化

1.1 无约束优化

(1)目标:

找到让优化指标 L ( u ) L (u) L(u)(标量)达到最小值的控制量 u u u

(2)过程:

求导的思想,最小值处应该满足 L u = 0 L_u=0 Lu=0

(2.1)原理:

利用泰勒级数展开 L ( u ) L(u) L(u),有:
在这里插入图片描述
当满足 L u = 0 L_u=0 Lu=0时,有:
在这里插入图片描述
对于任意控制 d u du du,若最小值(局部)时,都应该有增长的 d L dL dL,若最大值(局部)时,都应该有减小的 d L dL dL,相应的,就应该有 Q = L u u Q=L_{uu} Q=Luu的分类:
在这里插入图片描述

1.2 具有等式约束的优化

(1)目标:

将优化指标 L L L推广成包含系统状态 x x x的形式 L ( x , u ) L(x,u) L(x,u),引入简单的约束 f ( x , u ) = 0 f(x,u)=0 f(x,u)=0,解决优化问题。

(2)原理:

(2.1)必要性:

根据极限思想,在极值点处,应有 d u = 0 du=0 du=0,由约束条件可得:
在这里插入图片描述
整理(1.2-3)得(1.2-4):
在这里插入图片描述
代入(1.2-2),在极值点处偏导=0,故充分性为下式=0:
在这里插入图片描述

(2.2)充分性:

(1.2-2,3)可写成(1+n)维的矩阵形式:

在这里插入图片描述
极值点时,该方程需要有解,这需要系数阵的行线性相关(rank<n+1),因此可以找到n维向量 λ \lambda λ使:
在这里插入图片描述
整理可得拉格朗日乘子
在这里插入图片描述
同时也有下式成立,验证了充分性:
在这里插入图片描述

(2.3) 拉格朗日乘数的物理意义:

在极值点处 d u = 0 du=0 du=0,此时整理(1.2-9)可得:
在这里插入图片描述
因此,可以看出拉格朗日乘子代表着约束条件的变化 d f df df对优化指标变化 d L dL dL的影响
在这里插入图片描述

(3)求解方法:

将拉格朗日乘子 λ \lambda λ,引入Hamilton函数:

在这里插入图片描述
在约束条件 f ( x , u ) = 0 f(x,u)=0 f(x,u)=0时其满足:

在这里插入图片描述

用前文无约束优化的方法求解( L u = 0 L_u=0 Lu=0)时,要求优化指标的最值,需要满足以下三个条件:

在这里插入图片描述

(3.1)原理:

由Hamilton函数可见的形式可以看出:

在这里插入图片描述
由约束条件 f ( x , u ) = 0 f(x,u)=0 f(x,u)=0,则 H λ = 0 H_\lambda=0 Hλ=0也成立,得式(1.2-25a)。同时,在此条件下, d x dx dx d u du du的关系确定,很容易可以找到一个 λ \lambda λ使下式成立:

在这里插入图片描述
此为式(1.2-25b),在此基础上才有:

在这里插入图片描述
可以用前述无约束优化问题时的求解办法解决,即应该先满足 L u = d L / d u = H u = 0 L_u=dL/du=H_u=0 Lu=dL/du=Hu=0,此为式(1.2-25c)。

(3.2)验证最小/最大( L u u L_{uu} Luu):

用泰勒级数将 d L dL dL d f df df展开:

在这里插入图片描述
引入拉格朗日乘子构造Hamilton函数形式得:

在这里插入图片描述
d x dx dx d u du du的关系代入得 L u u L_{uu} Luu

在这里插入图片描述

(3.3)约束条件变化对优化指标的影响:

详见 P a g e 44 − P a g e 51 Page_{44}-Page_{51} Page44Page51

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值