飞行器控制笔记(二)——姿态解算之坐标变换与欧拉角更新姿态

飞行器控制笔记(二)——姿态解算之坐标变换与欧拉角更新姿态

一、基本假定

若将飞行器看作刚体,则它在空间中的姿态主要是指与机体固连的机体坐标系跟与大地固连的坐标系之间的旋转关系。旋转关系可以用欧拉角描述,为了方便叙述,我先记录下面的一些基本假定:
1. 建立的坐标系均是右手系,且欧拉角的旋转方向也满足右手定则;
2. 与机体固连的机体坐标系的 xyz x 轴 , y 轴 , z 轴 的正方向分别为前右下,与大地固连的大地坐标系的 XYZ X 轴 , Y 轴 , Z 轴 的正方向分别为北东地;
3. 机体坐标系绕其 z z 轴 旋转所得到的欧拉角称为偏航角 ψ ψ ,机体坐标系绕其 y y 轴 旋转所得到的欧拉角称为俯仰角 θ θ ,机体坐标系绕其 x x 轴 旋转所得到的欧拉角称为横滚角 ϕ ϕ
4. 用上下标 b b 来表示向量在机体(Body)坐标系中,用上下标 e 来表示向量在大地(Earth)坐标系中;
5. 在各个坐标系中,与x坐标轴相固连的单位向量 e1,k1,n1,b1,=[100]T e 1 , k 1 , n 1 , b 1 , … = [ 1 0 0 ] T ,与x坐标轴相固连的单位向量 e2,k2,n2,b2,=[010]T e 2 , k 2 , n 2 , b 2 , … = [ 0 1 0 ] T ,与z坐标轴相固连的单位向量 e3,k3,n3,b3,=[001]T e 3 , k 3 , n 3 , b 3 , … = [ 0 0 1 ] T 。 不论坐标系如何变换,其对应的三个正交单位向量(基底)之间的位置关系并不发生变化,因此才有这个假设。

二、坐标变换矩阵

机体坐标系在任一时刻的姿态都可以分解为通过大地坐标系绕固定点的三次旋转,每次旋转的的旋转轴对应于将要旋转的坐标系的某一坐标轴,也就是上面提到的欧拉角。旋转的次序不同,最终得到的姿态也不相同,因此,这里也规定这三次旋转的次序分别为绕先 z z 旋 转 ,再绕 y y 旋 转 ,最后绕 x x 旋 转 ,即 ψθϕ ψ − θ − ϕ .如下图所示,机体坐标系的旋转已经分解成了三次坐标系之间基本变换。下面就分别推导绕 z z ,绕 y ,绕 x x 的坐标变换矩阵。

需要注意到的一点是,这里讨论的都是坐标系之间的变换。也就是说空间中的位置向量或坐标点本身并不发生变化,而只是将它们从一个参考坐标系变换到了另一个参考系当中。

2.1绕z轴旋转

这里写图片描述
如上图所示,当坐标系绕z轴旋转时,空间中的向量与z轴之间的相对关系不会改变,因此在旋转前后 z = z ,现在就只考虑该向量在垂直于 Z Z 轴的平面上的投影 O A ,分别在平面直角坐标系 OXY O X Y 跟平面直角坐标系 Oxy O x y 上坐标之间的关系,如果向量 OA O A → 的模为 r r ,它在坐标系 O X Y 中的坐标可以表示如下:

{ x=rcos(β+ψ)y=rsin(β+ψ) { x = r cos ⁡ ( β
  • 31
    点赞
  • 145
    收藏
    觉得还不错? 一键收藏
  • 12
    评论
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值