1.1 空间直角坐标系

1.空间直角坐标系的建立

三维空间中几何

空间图形形式 ----- 点 线 面 体

↑ ↓ \uparrow\downarrow ↑↓ (空间直角坐标系作为桥梁帮助我们理解)

代数理论表达 — 坐标,方程(组)

2. 空间直角坐标系的定义

定义: 过空间一定点O,过该点作三条相互垂直的有向线段,OX,OY,OZ,组成一个空间直角坐标系,记为:Oxyz。

坐标系特点
  • 坐标原点

  • 坐标轴(三个)

  • 坐标面(三个)

  • 卦限(8个)

3. 空间点的坐标

定义:设M为空间的一点,过该点作三个分别垂直于x,y,z轴的平面,且分别交于点P,Q,R .若线段OP,OQ,OR的长度分别为, 则点M与一个三元有序数组(x , y , z )之间建立了一一对应的关系。称该三元有序数组(x , y , z )为点M的坐标。

image-20230224171016446

4.特殊点的坐标

  • 坐标原点O (三项为零)

  • 坐标轴上的点(三类)P Q R (两项为零)

  • 坐标面上的点(三类)A B C (一项为零)

  • 卦限上的点,如:第一卦限的点,各分量全为正

image-20230224171201415

空间中两点间的距离公式
定理:设有空间两点M1(x1,y1,z1),M2(x2,y2,z2),则两点间的距离为

d=|M1M2|= ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 + ( z 1 − z 2 ) 2 \sqrt{(x1-x2)^2 + (y1-y2)^2+(z1-z2)^2} (x1x2)2+(y1y2)2+(z1z2)2

注:
(1) 任意点M(x,y,z)与坐标原点间的距离为:

d=|OM|= x 2 + y 2 + z 2 \sqrt{x^2+y^2+z^2} x2+y2+z2

(2)平面上任意两点间的距离为

d = |M1M2| = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 \sqrt{(x1-x2)^2+(y1-y2)^2} (x1x2)2+(y1y2)2

任意两点间的距离为

d = |M1M2| = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 \sqrt{(x1-x2)^2+(y1-y2)^2} (x1x2)2+(y1y2)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值