各种分布总结

各种分布总结 – 潘登同学的数理统计笔记

离散型随机变量分布

0-1分布、伯努利分布

一次抛硬币
E X = p D X = p ( 1 − p ) EX= p \\ DX=p(1-p) EX=pDX=p(1p)

  • 概率密度函数
    f ( x ∣ p ) = { p x ( 1 − p ) x , x = 0 , 1 0 , x ≠ 0 , 1 f(x|p) = \begin{cases} p^x(1-p)^x, x=0,1\\ 0, x\neq0,1\\ \end{cases} f(xp)={px(1p)x,x=0,10,x=0,1

二项分布(n重伯努利)

n次扔硬币
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)


P { X = k } = ∁ n k p k ( 1 − p ) n − k E X = n p D ( X ) = n P ( 1 − p ) P\{X=k\} = \complement_n^k p^k (1-p)^{n-k}\\ \quad\\ EX = np\\ \quad\\ D(X) = nP(1-p)\\ P{X=k}=nkpk(1p)nkEX=npD(X)=nP(1p)

  • 两个二项分布的和也服从二项分布

如果 X ∼ B ( n , p ) , Y ∼ B ( n , p ) X\sim B(n,p),Y\sim B(n,p) XB(n,p),YB(n,p)且X与Y相互独立,那么X+Y也服从二项分布:
X + Y ∼ B ( n + m , p ) X+Y\sim B(n+m,p) X+YB(n+m,p)

  • 泊松近似

当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布。因此参数为λ=np的泊松分布可以作为二项分布B(n,p)的近似,近似成立的前提要求n足够大,而p足够小,np不是很小。

  • 正态近似

如果n足够大,那么分布的偏度就比较小。在这种情况下,如果使用适当的连续性校正,那么B(n,p)的一个很好的近似是正态分布:
N ( n p , n p ( 1 − p ) ) N(np, np(1-p)) N(np,np(1p))
常用的规则是np和n(1 −p)都必须大于 5

超几何分布

从有限N个物件(其中包含M个指定种类的物件)中抽出n个物件,成功抽出该指定种类的物件的次数(不放回)。
X ∼ H ( n , M , N ) X\sim H(n,M,N) XH(n,M,N)


P ( X = k ) = ∁ M k ∁ N − M n − k ∁ N n E ( X ) = n M N D ( X ) = n M N ( 1 − M N ) N − n N − 1 P(X=k) = \frac{\complement_M^k\complement_{N-M}^{n-k}}{\complement_{N}^n}\\ \quad\\ E(X) = \frac{nM}{N}\\ \quad\\ D(X) = \frac{nM}{N}(1-\frac{M}{N})\frac{N-n}{N-1}\\ P(X=k)=NnMkNMnkE(X)=NnMD(X)=NnM(1NM)N1Nn

  • 超几何分布和二项分布的联系
    • N → ∞ N\to \infty N时, M N → p \frac{M}{N} \to p NMp
    • N → ∞ N\to \infty N时, 超几何分布的数学期望:
      E X = n M N → n p = E X EX=\frac{nM}{N}\to np=EX EX=NnMnp=EX
    • N → ∞ N\to \infty N时, 超几何分布的方差:
      D X = n p ( 1 − p ) DX=np(1-p) DX=np(1p)
    • N → ∞ N\to \infty N时, 超几何分布近似为二项分布

几何分布

在n次伯努利试验中,试验k次才得到第一次成功的机率。详细地说,是:前k-1次皆失败,第k次成功的概率。几何分布是帕斯卡分布当r=1时的特例。

X ∼ G E ( p ) X \sim GE(p) XGE(p)


P ( X = k ) = ( 1 − p ) k − 1 p E X = 1 − p p V a r ( x ) = 1 − p p 2 P(X=k) = (1-p)^{k-1}p\\ \quad\\ EX = \frac{1-p}{p}\\ \quad\\ Var(x) = \frac{1-p}{p^2} P(X=k)=(1p)k1pEX=p1pVar(x)=p21p

泊松分布

泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
X ∼ P 0 ( λ ) X\sim P_0(\lambda) XP0(λ)


P ( X = k ) = λ k k ! e − λ E X = λ V a r ( X ) = λ P(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}\\ \quad\\ EX = \lambda \\ \quad\\ Var(X) = \lambda P(X=k)=k!λkeλEX=λVar(X)=λ

  • λ \lambda λ不同时的泊松分布的概率

泊松分布

#%%泊松分布
import math
import matplotlib.pyplot as plt
 
def p_possion(k, m):
    '''

    Parameters
    ----------
    k : int
        一段时间内发生事件的次数.
    m : int
        一段时间平均发生事件的次数(就是λ).

    Returns
    -------
    pk : float
        一段时间内发生k次的概率.

    '''
    kjie = 1  #k!
    for i in range(1, k+1):
        kjie*=i
    pk = math.pow(m, k)/kjie*math.e**(-m)
    return pk
 
if __name__=='__main__':
    x = list(range(1,21))
    p1 = []
    p2 = []
    p3 = []
    p4 = []
    for i in x:
        p1.append(p_possion(i, 1))
        p2.append(p_possion(i, 3))
        p3.append(p_possion(i, 5))
        p4.append(p_possion(i, 10))
    plt.subplot(221)
    plt.bar(x, p1, color='red')
    plt.title('λ=1')
    plt.subplot(222)
    plt.bar(x, p2, color='red')
    plt.title('λ=2')
    plt.subplot(223)
    plt.bar(x, p3, color='red')
    plt.title('λ=3')
    plt.subplot(224)
    plt.bar(x, p4, color='red')
    plt.title('λ=4')
    plt.show()
  • 两个泊松变量的组合也是泊松分布
    X ∼ P ( λ ) , Y ∼ P ( λ ) , X 与 Y X\sim P(\lambda), Y\sim P(\lambda), X与Y XP(λ),YP(λ),XY相互独立:

记X发生X次, Y发生Y次;
P ( X + Y ) = P ( X ) + P ( Y ) E ( X + Y ) = E ( X ) + E ( Y ) P(X+Y) = P(X) + P(Y)\\ \quad\\ E(X+Y) = E(X) + E(Y) P(X+Y)=P(X)+P(Y)E(X+Y)=E(X)+E(Y)

连续型随机变量分布

均匀分布

在相同长度间隔的分布概率是等可能的
U ( a , b ) U(a,b) Uab


E X = a + b 2 V a r ( X ) = ( b − a ) 2 12 EX = \frac{a+b}{2}\\ Var(X) = \frac{(b-a)^2}{12}\\ EX=2a+bVar(X)=12(ba)2

  • 概率密度函数
    f ( x ) = { 1 b − a , a < x < b 0 , e l s e f(x) = \begin{cases} \frac{1}{b-a}, a<x<b\\ 0, else\\ \end{cases} f(x)={ba1,a<x<b0,else

  • 分布函数
    F ( x ) = { 0 , x < a x − a b − a , a ≤ x ≤ b 1 , b < x F(x) = \begin{cases} 0, x<a\\ \frac{x-a}{b-a}, a\leq x\leq b\\ 1, b < x \end{cases} F(x)=0,x<abaxa,axb1,b<x

均匀分布

#%%均匀分布
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def p_uniform(k, a, b):
    '''

    Parameters
    ----------
    k : float
        P(X<k)的k
    a : float
        区间左端点.
    b : float
        区间右端点.

    Returns
    -------
    pk : float
        累计概率.
    plt : figure
        概率密度函数与分布函数

    '''
    x = np.linspace(a,b, int((b-a)*100))
    p = 1/(b-a)
    plt.figure(figsize=(8,4))
    plt.subplot(121)
    plt.plot(x, [p]*len(x), 'red')
    plt.xlim([a-1, b+1])
    plt.ylim([0, 1])
    plt.title('区间[%d, %d]上的均匀分布概率密度函数'%(a,b))
    plt.subplot(122)
    y = (x-a)/(b-a)
    plt.plot(x, y, 'b')
    plt.xlim([a-1, b+1])
    plt.ylim([0, 1])
    plt.title('区间[%d, %d]上的均匀分布分布函数'%(a,b))
    plt.show()
    if k < a:
        pk = 0
    elif k<=b:
        pk = (k-a)/(b-a)
    else:
        pk = 1
    return pk
    
 
if __name__=='__main__':
    p_uniform(2, 1, 3)
  • 标准均匀分布

若a = 0并且b = 1,所得分布U(0,1)称为标准均匀分布;

如果 U 1 U_1 U1具有标准均匀分布, 那么 1 − U 1 1-U_1 1U1也是标准均匀分布。

指数分布

指数分布(也称为负指数分布)是描述泊松过程中的事件之间的时间的概率分布,即事件以恒定平均速率连续且独立地发生的过程。
X ∼ E ( λ ) X\sim E(\lambda) XE(λ)


E X = 1 λ V a r ( X ) = 1 λ 2 EX = \frac{1}{\lambda}\\ Var(X) = \frac{1}{\lambda^2} EX=λ1Var(X)=λ21

  • 概率密度函数
    f ( x ) = { λ e − λ x , x > 0 0 , x ≤ 0 f(x) = \begin{cases} \lambda e^{-\lambda x}, x>0\\ 0, x\leq0\\ \end{cases} f(x)={λeλx,x>00,x0

  • 分布函数
    F ( x ) = { 0 , x < 0 1 − e − λ x , x ≥ 0 F(x) = \begin{cases} 0, x<0\\ 1-e^{-\lambda x}, x\geq 0\\ \end{cases} F(x)={0,x<01eλx,x0

指数分布

#%%指数分布
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def p_Exponential(k, m):
    '''

    Parameters
    ----------
    k : float
        P(X<k)的k
    m : int
        两个事件发生的平均时间间隔(就是λ).

    Returns
    -------
    pk : float
        累计概率.
    plt : figure
        概率密度函数与分布函数

    '''
    x = np.linspace(0,5, 1000)
    p = m * np.e ** (-m*x)
    plt.figure(figsize=(8,4))
    plt.subplot(121)
    plt.plot(x, p, 'red')
    plt.title('λ=%d时指数分布概率密度函数'%m)
    plt.subplot(122)
    y = 1 - np.e ** (-m * x)
    plt.plot(x, y, 'b')
    plt.title('λ=%d时指数分布分布函数'%m)
    plt.show()
    if k < 0:
        pk = 0
    else:
        pk = 1 - np.e ** (-m * k)
    return pk
    
 
if __name__=='__main__':
    p_Exponential(2, 1)
  • 指数分布的无记忆性

这表示如果一个随机变量呈指数分布, 当时有 s , t ≥ 0 s,t\geq 0 s,t0时有
P ( T > s + t ∣ T > t ) = P ( T > s ) P(T>s+t|T>t) = P(T>s) P(T>s+tT>t)=P(T>s)

即,如果T是某一元件的寿命,已知元件使用了t小时,它总共使用至少小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。

正态分布

X ∼ N ( μ , σ 2 ) X\sim N(\mu, \sigma^2) XN(μ,σ2)


E X = μ V a r ( X ) = σ 2 EX = \mu\\ Var(X) = \sigma^2 EX=μVar(X)=σ2

  • 概率密度函数
    f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 f(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ2 1e2σ2(xμ)2

  • 分布函数

积不出来 0_0 但是可以用蒙特卡洛计算

正态分布

#%%正态分布
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def p_Gaussian(k, mu, sigma):
    '''

    Parameters
    ----------
    k : float
        P(X<k)的k
    mu : float
        正态分布的μ.
    sigma : float
        正态分布的σ.
    Returns
    -------
    pk : float
        累计概率.
    plt : figure
        概率密度函数与分布函数

    '''
    x = np.linspace(mu-3*sigma,mu+3*sigma, 1000)
    p = 1/np.sqrt(2*np.pi*sigma**2) * np.e ** -((x-mu)**2/2*sigma**2)
    plt.figure(figsize=(10,5))
    plt.subplot(121)
    plt.plot(x, p, 'red')
    plt.title('μ=%d,σ=%d时正态分布概率密度函数'%(mu, sigma))
    plt.subplot(122)
    # 蒙特卡洛求解概率分布函数
    y = np.linspace(0, p[500], 1000)
    S = 6*sigma * p[500]  # 矩形框的总面积
    result = [[], []]
    for i in range(int(1e4)):
        a = np.random.choice(np.linspace(0, 999, 1000))
        b = np.random.choice(y)
        if x[int(a)] < k and b < p[int(a)]:
            result[0].append(x[int(a)])
            result[1].append(b)
    pk = S * len(result[0]) / 1e4
    plt.plot(x, p, 'red')
    plt.scatter(result[0], result[1], s=1, c='red')
    plt.title('μ=%d,σ=%d,x=%f时正态分布概率密度函数'%(mu, sigma, k))
    return print(pk)
    
 
if __name__=='__main__':
    p_Gaussian(0.5,0,1)
  • 正态分布的线性性

X ∼ N ( μ x , σ x 2 ) X\sim N(\mu_x, \sigma_x^2) XN(μx,σx2), a、b是实数

a X + b ∼ N ( a μ + b , ( a σ ) 2 ) aX + b \sim N(a\mu+b, (a\sigma)^2) aX+bN(aμ+b,(aσ)2)

  • 两个正态分布的组合也是正态分布

X ∼ N ( μ x , σ x 2 ) , Y ∼ N ( μ y , σ y 2 ) 互 相 独 立 X\sim N(\mu_x, \sigma_x^2), Y\sim N(\mu_y, \sigma_y^2)互相独立 XN(μx,σx2),YN(μy,σy2)

则他们的和也满足正态分布, U = X + Y ∼ N ( μ x + μ y , σ x 2 + σ y 2 ) U=X+Y\sim N(\mu_x+\mu_y, \sigma_x^2+\sigma_y^2) U=X+YN(μx+μy,σx2+σy2)

则他们的差也满足正态分布, U = X − Y ∼ N ( μ x − μ y , σ x 2 + σ y 2 ) U=X-Y\sim N(\mu_x-\mu_y, \sigma_x^2+\sigma_y^2) U=XYN(μxμy,σx2+σy2)

卡方分布

若n个相互独立的随机变量 ζ 1 , ζ 2 , … , ζ n \zeta_1, \zeta_2,\ldots,\zeta_n ζ1,ζ2,,ζn,均服从标准正态分布(也称独立同分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution)。
χ 2 = ∑ i = 1 n X i 2 ∼ Γ ( n 2 , 2 ) Q ∼ χ 2 ( n ) \chi^2 = \sum_{i=1}^{n}\Chi_i^2 \sim \Gamma(\frac{n}{2}, 2)\\ \quad\\ Q\sim \chi^2(n) χ2=i=1nXi2Γ(2n,2)Qχ2(n)


E X = n V a r ( X ) = 2 n EX = n\\ \quad\\ Var(X) = 2n EX=nVar(X)=2n

  • 概率密度函数
    f ( y ) = { 1 2 n / 2 Γ ( n 2 ) y n 2 − 1 e − y 2 , x > 0 0 , x ≤ 0 f(y) = \begin{cases} \frac{1}{2^{n/2}\Gamma(\frac{n}{2})}y^{\frac{n}{2}-1}e^{\frac{-y}{2}}, x>0\\ 0, x\leq0\\ \end{cases} f(y)={2n/2Γ(2n)1y2n1e2y,x>00,x0

  • 那显然也是积不出分布函数的

卡方分布

卡方分布2

#%%卡方分布
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def p_chi_square(k, n):
    '''

    Parameters
    ----------
    k : float
        P(Y<k)的k
    n : df自由度
    Returns
    -------
    pk : float
        累计概率.
    plt : figure
        概率密度函数与分布函数

    '''
    y = np.linspace(0, 15, 1000)
    p = st.chi2.pdf(y, df=n)
    plt.figure(figsize=(10,5))
    plt.subplot(121)
    plt.plot(y, p, 'red')
    plt.title('df=%d时卡方分布概率密度函数'%(n))
    plt.subplot(122) # 用微积分的方法来积
    delta_y = y[1]-y[0]
    result = []
    for i,j in enumerate(p):
        if i == 0:
            result.append(j*delta_y)
        else:
            result.append(result[i-1] + j*delta_y)
    plt.plot(y, result, 'red')
    plt.title('df=%d时卡方分布分布函数'%(n))
    pk = st.chi2.cdf(k, df=n)
    return print(pk)
    
 
if __name__=='__main__':
    p_chi_square(1,2)
    p_chi_square(1,8)
  • 渐进正态性

随着 n → ∞ n\to \infty n, χ 2 \chi^2 χ2分布趋于正态分布

  • 不同的自由度决定不同的卡方分布

自由度越小,分布越偏斜.

  • 卡方分布的组合也是卡方分布

χ 2 ( n 1 ) , χ 2 ( n 2 ) \chi^2(n_1),\chi^2(n_2) χ2(n1),χ2(n2)互相独立,他们的和服从自由度为 n 1 + n 2 n_1+n_2 n1+n2的卡方分布

χ 2 ( n 1 ) + χ 2 ( n 2 ) ∼ χ 2 ( n 1 + n 2 ) \chi^2(n_1) + \chi^2(n_2) \sim \chi^2(n_1+n_2) χ2(n1)+χ2(n2)χ2(n1+n2)

t分布

假设 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) Y ∼ χ 2 ( n ) Y\sim \chi^2(n) Yχ2(n)且X、Y相互独立,则称随机变量
t = X Y n t = \frac{X}{\sqrt{\frac{Y}{n}}} t=nY X
服从自由度为n的t分布,记为:
t ∼ t ( n ) t \sim t(n) tt(n)


E X = 0 V a r ( X ) = n n − 2 EX = 0\\ \quad\\ Var(X) = \frac{n}{n-2} EX=0Var(X)=n2n

  • 概率密度函数
    h ( t ) = Γ [ n + 1 2 ] π n Γ ( n 2 ) ( 1 + t 2 n ) − n + 1 2 h(t) = \frac{\Gamma[\frac{n+1}{2}]}{\sqrt{\pi n}\Gamma(\frac{n}{2})}(1+\frac{t^2}{n})^{-\frac{n+1}{2}} h(t)=πn Γ(2n)Γ[2n+1](1+nt2)2n+1

  • 分布函数

还是积不出来 0_0

t分布

#%%t分布
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def p_t(k, n):
    '''

    Parameters
    ----------
    k : float
        P(Y<k)的k.
    n : int
        df自由度.
    Returns
    -------
    pk : float
        累计概率.
    plt : figure
        概率密度函数与分布函数.

    '''
    t = np.linspace(-5, 5, 1000)
    p = st.t.pdf(t, df=n)
    plt.figure(figsize=(10,5))
    plt.subplot(121)
    plt.plot(t, p, 'red')
    plt.title('df=%d时t分布概率密度函数'%(n))
    plt.subplot(122) # 用微积分的方法来积
    delta_t = t[1]-t[0]
    result = []
    for i,j in enumerate(p):
        if i == 0:
            result.append(j*delta_t)
        else:
            result.append(result[i-1] + j*delta_t)
    plt.plot(t, result, 'red')
    plt.title('df=%d时t分布分布函数'%(n))
    pk = st.t.cdf(k, df=n)
    return print(pk)
    
 
if __name__=='__main__':
    p_t(0,3)
  • 渐进正态性

随着自由度逐渐增大,t分布逐渐接近标准正态分布。

  • 不同的自由度决定不同的t分布

自由度df越小,t分布曲线越低平;自由度df越大,t分布曲线越接近标准正态分布曲线。

F分布

假设 U ∼ χ 2 ( n 1 ) U\sim \chi^2(n_1) Uχ2(n1) V ∼ χ 2 ( n 2 ) V\sim \chi^2(n_2) Vχ2(n2)且U、V相互独立,则称随机变量
F = U n 1 V n 2 F = \frac{\frac{U}{n_1}}{\frac{V}{n_2}} F=n2Vn1U
服从自由度为 ( n 1 , n 2 ) (n_1, n_2) (n1,n2)的F分布,记为:
F ∼ F ( n 1 , n 2 ) F \sim F(n_1, n_2) FF(n1,n2)


E X = n n − 2 V a r ( X ) = 2 ∗ n 2 2 ( n 1 + n 2 − 2 ) n 1 ( n 2 − 2 ) 2 ( n 2 − 4 ) EX = \frac{n}{n-2}\\ \quad\\ Var(X) = \frac{2*n_2^2(n_1 + n_2 - 2)}{n_1(n_2-2)^2(n_2-4)}\\ EX=n2nVar(X)=n1(n22)2(n24)2n22(n1+n22)

  • 概率密度函数
    f ( y ) = { Γ ( n 1 + n 2 2 ) Γ ( n 1 2 ) Γ ( n 2 2 ) ( n 1 n 2 ) n 1 2 y n 1 2 − 1 ( 1 + n 1 y n 2 ) − n 1 + n 2 2 , y > 0 0 , y ≤ 0 f(y) = \begin{cases} \frac{\Gamma(\frac{n_1+n_2}{2})}{\Gamma(\frac{n_1}{2})\Gamma(\frac{n_2}{2})}(\frac{n_1}{n_2})^{\frac{n_1}{2}}y^{\frac{n_1}{2}-1}(1+\frac{n_1y}{n_2})^{-\frac{n_1+n_2}{2}}, y>0\\ 0, y\leq0\\ \end{cases} f(y)={Γ(2n1)Γ(2n2)Γ(2n1+n2)(n2n1)2n1y2n11(1+n2n1y)2n1+n2,y>00,y0

  • 分布函数

更积不出来了 0_0

F分布1

F分布2

#%%F分布
import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as st
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False


def p_F(k, n1, n2):
    '''

    Parameters
    ----------
    k : float
        P(Y<k)的k.
    n1 : int
        df自由度1.
    n2 : int
        df自由度2.
    Returns
    -------
    pk : float
        累计概率.
    plt : figure
        概率密度函数与分布函数.

    '''
    F = np.linspace(0, 5, 1000)
    p = st.f.pdf(F, dfn=n1, dfd=n2)
    plt.figure(figsize=(10,5))
    plt.subplot(121)
    plt.plot(F, p, 'red')
    plt.title('df=(%d, %d)时t分布概率密度函数'%(n1, n2))
    plt.subplot(122) # 用微积分的方法来积
    delta_F = F[1]-F[0]
    result = []
    for i,j in enumerate(p):
        if i == 0:
            result.append(j*delta_F)
        else:
            result.append(result[i-1] + j*delta_F)
    plt.plot(F, result, 'red')
    plt.title('df=(%d, %d)时t分布分布函数'%(n1, n2))
    pk = st.f.cdf(k, dfn=n1, dfd=n2)
    return print(pk)
    
 
if __name__=='__main__':
    p_F(3,10,40)
    p_F(3,11,3)
  • F分布的倒数也是F分布
    1 F ∼ F ( n 2 , n 1 ) \frac{1}{F} \sim F(n_2, n_1) F1F(n2,n1)

  • t分布的平方时F分布

设 X ∼ t ( n ) , 则 X 2 ∼ F ( 1 , n ) 设X\sim t(n), 则X^2 \sim F(1, n) Xt(n),X2F(1,n)

  • 渐进正态性

n 1 → ∞ , n 2 > 4 n_1 \to \infty, n_2 >4 n1,n2>4时近似服从正态分布

F分布3

  • 2
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

PD我是你的真爱粉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值