CINTA作业六:拉格朗日定理

g 1 H = g 2 H g_1H=g_2H g1H=g2H,则存在 h 1 , h 2 ∈ H h_1,h_2∈H h1,h2H,使得 g 1 h 1 = g 2 h 2 g_1h_1=g_2h_2 g1h1=g2h2
故有 g 1 − 1 g 1 h 1 = g 1 − 1 g 2 h 2 g_1^{-1}g_1h_1=g_1^{-1}g_2h_2 g11g1h1=g11g2h2
g 1 − 1 g 1 h 1 h 2 − 1 = g 1 − 1 g 2 h 2 h 2 − 1 g_1^{-1}g_1h_1h_2^{-1}=g_1^{-1}g_2h_2h_2^{-1} g11g1h1h21=g11g2h2h21
e h 1 h 2 − 1 = g 1 − 1 g 2 e eh_1h_2^{-1}=g_1^{-1}g_2e eh1h21=g11g2e
g 1 − 1 g 2 ∈ H g_1^{-1}g_2∈H g11g2H

g 1 − 1 g 2 ∈ H g_1^{-1}g_2∈H g11g2H
h 1 = g 1 − 1 g 2 , h 2 = e h_1=g_1^{-1}g_2,h_2=e h1=g11g2,h2=e
g 1 h 1 = g 2 h 2 g_1h_1=g_2h_2 g1h1=g2h2
g 1 H = g 2 H g_1H=g_2H g1H=g2H

g ∈ G g∈G gG,由吸收率可得: g H = H g = H gH=Hg=H gH=Hg=H
g ∉ G g∉G g/G g H ∉ H , H g ∉ H gH∉H,Hg∉H gH/HHg/H,因为[G:H]=2,所以 g H = H g = G − H gH=Hg=G-H gH=Hg=GH

因为群H是群G的真子群,且∣G∣ mode ∣H∣ =0,所以存在整数n >1,使得n∣H∣ = ∣G∣,故得证。

因为pq|p,则G存在p阶子群H1,由拉格朗日定理,且p为素数,H1为循环群,
同理G存在q阶子群H2,H2为循环群,
所以G为pq阶循环群,循环群的子群还是循环群,所以G的任意真子群是循环群。

暂时能力不足。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值