用定制开发板通过vitis ai 2.0部署自己训练的yolov3(pytorch框架)

前言

开发板为alinx黑金xczu9eg,具体配置教程请看我的另一篇文章

pc端:yolov3模型为官方ulteralytics-yolov3-9.5.0

pytorch版本为1.7.1

根据vitis ai官网要求,接下来第一章和第二章介绍如何准备这三个文件

第三第四章介绍部署到fpga的具体细节

一、训练自己的yolov3模型

1.在github的ulteralytics官网下载模型文件GitHub - ultralytics/yolov3: YOLOv3 in PyTorch > ONNX > CoreML > TFLite

2.修改模型训练文件train.py,从他原本只保存模型权重字典,改为用torch.save()保存模型结构+权重的.pth文件

注意: 此处模型输入图像的尺寸应当与dpu尺寸相同,我的是416*416

由此得到model.pth文件 

二、准备模型文件和数据集文件

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值