前言
开发板为alinx黑金xczu9eg,具体配置教程请看我的另一篇文章
pc端:yolov3模型为官方ulteralytics-yolov3-9.5.0
pytorch版本为1.7.1
根据vitis ai官网要求,接下来第一章和第二章介绍如何准备这三个文件
第三第四章介绍部署到fpga的具体细节
一、训练自己的yolov3模型
1.在github的ulteralytics官网下载模型文件GitHub - ultralytics/yolov3: YOLOv3 in PyTorch > ONNX > CoreML > TFLite
2.修改模型训练文件train.py,从他原本只保存模型权重字典,改为用torch.save()保存模型结构+权重的.pth文件
注意: 此处模型输入图像的尺寸应当与dpu尺寸相同,我的是416*416
由此得到model.pth文件