第三章 测量误差基本知识

根据教材(武汉大学出版《数字地形测量学》潘正风)进行的知识点总结,自用复习考试,侵删

第三章 测量误差基本知识

一、观测误差的分类与处理原则

1、误差的分类

系统误差:在相同观测条件下,对某一量进行一系列的观测,如果出现的误差在符号和数值上都相同,或按一定规律,这种误差称为系统误差

偶然误差:在相同观测条件下,对某一量进行一系列的观测,如果误差出现的符号和数值大小都不相同,表面上看没有任何规律性,这种误差称为偶然误差。
粗差:由于观测者的粗心或各种干扰造成大于限差的误差称为粗差。

多余观测:为了防止错误的发生和提高测量成果的精度,在测量工作中一般需要进行多余必要的测量,称为多余观测,有了多余观测就可以发现观测值中的错误,以便剔除或重测

2、误差的处理原则

粗差:包含有错误的观测值应该舍弃,并重新进行观测
偶然误差:进行多余观测
系统误差:按照其产生的原因和规律加以改正和抵消或削弱

测量误差产生的原因:人为因素;仪器误差;外界环境

3、偶然误差的特性(类正态分布)

1)在相同观测条件下的有限次观测中,偶然误差的绝对值不会超过一定的限值
2)绝对值较小的误差出现的频率大,绝对值较大的误差出现的频率小
3)绝对值相等的正负误差具有大致相等的出现频率
4)当观测次数无限大时,偶然误差的算术平均值平均值趋近为0

二、衡量精度的标准

1、中误差

中误差:在测量中定义按有限次观测的偶然误差求得的标准差为中误差

相对误差(也称相对中误差):用观测值的中误差观测值之比来描述观测的质量

限差(允许误差):一般进行的测量次数是有限的,大于两倍中误差的误差很少出现,以两倍中误差作为允许的误差极限
在这里插入图片描述

2、算术平均值和观测值的中误差

算数平均值(最或是值):通常把有限次观测值的算术平均值作为该量的最或是值

观测值的改正值算数平均值观测值之差称为观测值的改正值(相当于将算数平均值看作真值)

改正值计算观测值的中误差(因为有时候真值未知,以算数平均值为最或是值,以改正值为真误差)
在这里插入图片描述

见上图可知(n-1)代替了(n),这是因为在真值未知的情况下,则有一次观测值是必要的,其余n-1次观测值是多余的,因此n和n-1是代表真值已知和未知两种情况下的多余观测

算例1

计算实例

3、误差传播定律

误差传播:由于观测值中含有误差,使其函数受其影响含有误差,称为误差传播

4、加权平均值及其精度评定

单位权中误差:权等于1的中误差

不等精度测量:观测条件是人、仪器、环境。在相同观测条件下的一系列测量是等精度观测,当观测条件不同时,是不等精度观测

:权衡精度的指标。某一观测值的精度越大,权越大。

权的意义:可以用于计算加权平均值,以获得更可靠的观测值。计算加权平均值中误差以求得加权平均值的精度。根据不同观测值权的大小计算不同观测值的精度。

公式见下图
加权平均值
在这里插入图片描述

算例2

在这里插入图片描述

公式总结

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值