引言
\quad\quad
最近接触了泛函的变分的概念,回头再想变分不等式,怎么也想不明白变分不等式是如何 “变分” 的,所以重新一起看了下两者,整理在此,以便理解清晰。
\quad\quad
首先来看泛函的变分。为了解释清晰,先根据自我理解介绍下泛函的概念。
泛函
泛函定义
对于某一类函数集合
{
x
(
t
)
}
\{x(t)\}
{x(t)} 中的每一个函数
x
(
t
)
x(t)
x(t), 在映射关系
J
J
J 下均有一个确定的数与之对应,则称
J
J
J 为依赖于函数
x
(
t
)
x(t)
x(t) 的泛函,记作
J
=
J
[
x
(
.
)
]
=
J
[
x
(
t
)
]
J=J[x(.)]=J[x(t)]
J=J[x(.)]=J[x(t)]
注:泛函与函数的区别
泛函即为以函数为自变量的一种映射到实数域的映射关系。而函数则是以某一实数为自变量映射到实数域的映射关系。这里的
J
[
x
(
t
)
]
J[x(t)]
J[x(t)]可理解为整条曲线
x
(
t
)
x(t)
x(t) 在映射关系
J
J
J 下对应一个实数值。下面来解释一下泛函的自变量,如下图:
假设从[0,1]位置我们丢掷一个物体,该物体分别沿
f
(
x
)
f(x)
f(x),
h
(
x
)
h(x)
h(x),
g
(
x
)
g(x)
g(x) 三条轨道下落,同样都可降落至 [1,0]。那么我们可以将这个下落的过程称为一个泛函,三条下落的轨道曲线称为这个泛函的自变量,即泛函定义中的函数集合为
{
f
(
x
)
,
h
(
x
)
,
g
(
x
)
}
\{f(x),h(x),g(x)\}
{f(x),h(x),g(x)},这个物体的高度位置即为映射关系
J
J
J,确定的数为高度0。
泛函的变分
类似于函数中的自变量的含义,在泛函中定义域函数集合中的函数也有其自身的名称,即为宗量
。
- 宗量:若函数 x ( t ) x(t) x(t) 是映射关系 J J J 的自变量函数,则称 x ( t ) x(t) x(t) 为泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的宗量函数。如上图的 f ( x ) f(x) f(x), h ( x ) h(x) h(x), g ( x ) g(x) g(x) 都成为宗量函数。
同样类似于函数中两个自变量的差对应于泛函中为宗量的变分
- 宗量的变分:宗量的变分是指在同一函数类中的两个宗量函数间的差,即: δ x ( t ) = x ( t ) − x ∗ ( t ) . \delta x(t)=x(t)-x^*(t). δx(t)=x(t)−x∗(t).
类似于函数取值的差在泛函关系中用泛函增量来表示,比如上图中物体的高度在某一时刻使用不同轨道的差值。
- 泛函的增量()
由自变量函数 x ( t ) x(t) x(t) 的变分 δ x ( t ) \delta x(t) δx(t) 引起泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的增量 Δ J = J [ x ( t ) ] − J [ x ∗ ( t ) ] = J [ x ∗ ( t ) + δ x ( t ) ] − J [ x ∗ ( t ) ] \Delta J=J[ x(t)]-J[x^*(t)]=J[x^*(t)+\delta x(t)]-J[x^*(t)] ΔJ=J[x(t)]−J[x∗(t)]=J[x∗(t)+δx(t)]−J[x∗(t)] 为泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的增量。
即假设这里的 x ( t ) x(t) x(t) 为上图中的轨道 f ( x ) f(x) f(x), 这里的增量即可解释为使用轨道 f ( x ) f(x) f(x) 相较于使用轨道 h ( x ) h(x) h(x), g ( x ) g(x) g(x) 的物体的高度的差值。
继而,类似于函数导数的概念,在泛函中有泛函的变分
的概念,即:
- 泛函的变分
当宗量函数 x ( t ) x(t) x(t) 有变分时,泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的增量 Δ J [ x ( t ) ] \Delta J[x(t)] ΔJ[x(t)] 可表示为 Δ J = J [ x ∗ ( t ) + δ x ( t ) ] − J [ x ( t ) ] = d J d x ∣ x ∗ δ x + 1 2 d 2 J d x 2 ∣ x ∗ ( δ x ) 2 + R , \Delta J=J[x^*(t)+\delta x(t)]-J[x(t)]=\frac{dJ}{dx}|_{x^*}\delta x+\frac{1}{2}\frac{d^2J}{dx^2}|_{x^*}(\delta x)^2+R, ΔJ=J[x∗(t)+δx(t)]−J[x(t)]=dxdJ∣x∗δx+21dx2d2J∣x∗(δx)2+R, 其中 Δ J \Delta J ΔJ 的线性部分
称为泛函的变分,记作 δ J \delta J δJ,即 δ J = d J d x ∣ x ∗ δ x , \delta J=\frac{dJ}{dx}|_{x^*}\delta x, δJ=dxdJ∣x∗δx,换句话说, 泛函的变分是泛函增量的线性主部。
Lemma 1: 泛函的变分 δ J = ∂ ∂ α J [ x ( t ) + α δ x ( t ) ] ∣ α = 0 \delta J=\frac{\partial}{\partial \alpha}J[x(t)+\alpha \delta x(t)]|_{\alpha=0} δJ=∂α∂J[x(t)+αδx(t)]∣α=0
Example 1: 计算泛函
J
=
∫
0
1
x
2
(
t
)
d
t
J=\displaystyle \int_0^1x^2(t)dt
J=∫01x2(t)dt 的变分。
δ
J
=
∂
∂
α
J
[
x
(
t
)
+
α
δ
x
(
t
)
]
∣
α
=
0
=
∂
∂
α
∫
0
1
[
x
(
t
)
+
α
δ
x
(
t
)
]
2
d
t
∣
α
=
0
=
∫
0
1
2
[
x
(
t
)
+
α
δ
x
(
t
)
]
δ
x
(
t
)
d
t
∣
α
=
0
=
∫
0
1
2
x
(
t
)
δ
x
(
t
)
d
t
\begin{aligned} \delta J&=\frac{\partial}{\partial \alpha}J[x(t)+\alpha\delta x(t)]|_{\alpha=0}\\ &=\frac{\partial}{\partial \alpha}\displaystyle\int_0^1[x(t)+\alpha\delta x(t)]^2dt|_{\alpha=0}\\ &=\displaystyle\int_0^12[x(t)+\alpha \delta x(t)]\delta x(t)dt|_{\alpha=0}\\ &=\displaystyle\int_0^12x(t)\delta x(t)dt \end{aligned}
δJ=∂α∂J[x(t)+αδx(t)]∣α=0=∂α∂∫01[x(t)+αδx(t)]2dt∣α=0=∫012[x(t)+αδx(t)]δx(t)dt∣α=0=∫012x(t)δx(t)dt
变分不等式
首先来看一下什么叫做变分不等式。
变分不等式定义
变分不等式(variational inequality) V I ( F , X ) VI(F,X) VI(F,X)的正式数学定义为:
任给定义在巴纳赫空间(内积空间)
Ω
\Omega
Ω 的一个子集
X
X
X 上的泛函
F
:
X
→
Ω
∗
F: X\to \Omega^*
F:X→Ω∗, 其中
Ω
∗
\Omega^*
Ω∗ 是
Ω
\Omega
Ω 的对偶空间(对偶空间的解释参阅参考文献2)则
V
I
(
F
,
X
)
VI(F,X)
VI(F,X) 等价于寻找一个
x
∈
X
x\in X
x∈X,使得
⟨
F
(
x
)
,
y
−
x
⟩
≥
0
\langle F(x),y-x\rangle\geq0
⟨F(x),y−x⟩≥0对于任意的
y
∈
X
y\in X
y∈X成立。
在最优化方面的定义:
给定
R
n
R^n
Rn 的一个子集(闭凸集)
K
K
K以及映射
F
:
K
→
R
n
F: K\to R^n
F:K→Rn,变分不等式问题
V
I
(
K
,
F
)
VI(K,F)
VI(K,F) 即为寻求一个
x
∗
∈
K
x^*\in K
x∗∈K 使得
(
x
−
x
∗
)
T
F
(
x
∗
)
≥
0
(x-x^*)^TF(x^*)\geq 0
(x−x∗)TF(x∗)≥0
对任意的
x
∈
K
x\in K
x∈K 成立。
变分不等式几何性解释
若可行点
x
∗
x^*
x∗ 为变分不等式 问题
V
I
(
F
,
X
)
VI(F,X)
VI(F,X) 的一个解,则映射
F
F
F 在
x
∗
x^*
x∗ 点处与所有可行方向
x
−
x
∗
x-x^*
x−x∗,
∀
x
∈
K
\forall x\in K
∀x∈K 之间的夹角为锐角(acute angle)
问题:还是没搞懂变分不等式的变分与泛函的变分之间的关系。变分不等式variational inequality中variational是否可解释为可变的,即可变的不等式。
自我理解:求泛函的极大值和极小值问题称为变分问题,求泛函极值的方法称为变分法。当不等式的等号成立的时候取得极值,因变分不等式与泛函的极值有关故而称为变分不等式。该命名是从变分法的定义来看的。