泛函,变分与变分不等式

引言

\quad\quad 最近接触了泛函的变分的概念,回头再想变分不等式,怎么也想不明白变分不等式是如何 “变分” 的,所以重新一起看了下两者,整理在此,以便理解清晰。
\quad\quad 首先来看泛函的变分。为了解释清晰,先根据自我理解介绍下泛函的概念。

泛函

泛函定义

对于某一类函数集合 { x ( t ) } \{x(t)\} {x(t)} 中的每一个函数 x ( t ) x(t) x(t), 在映射关系 J J J 下均有一个确定的数与之对应,则称 J J J 为依赖于函数 x ( t ) x(t) x(t) 的泛函,记作 J = J [ x ( . ) ] = J [ x ( t ) ] J=J[x(.)]=J[x(t)] J=J[x(.)]=J[x(t)]
注:泛函与函数的区别
在这里插入图片描述
泛函即为以函数为自变量的一种映射到实数域的映射关系。而函数则是以某一实数为自变量映射到实数域的映射关系。这里的 J [ x ( t ) ] J[x(t)] J[x(t)]可理解为整条曲线 x ( t ) x(t) x(t) 在映射关系 J J J 下对应一个实数值。下面来解释一下泛函的自变量,如下图:
在这里插入图片描述
假设从[0,1]位置我们丢掷一个物体,该物体分别沿 f ( x ) f(x) f(x), h ( x ) h(x) h(x), g ( x ) g(x) g(x) 三条轨道下落,同样都可降落至 [1,0]。那么我们可以将这个下落的过程称为一个泛函,三条下落的轨道曲线称为这个泛函的自变量,即泛函定义中的函数集合为 { f ( x ) , h ( x ) , g ( x ) } \{f(x),h(x),g(x)\} {f(x),h(x),g(x)},这个物体的高度位置即为映射关系 J J J,确定的数为高度0。

泛函的变分

类似于函数中的自变量的含义,在泛函中定义域函数集合中的函数也有其自身的名称,即为宗量

  • 宗量:若函数 x ( t ) x(t) x(t) 是映射关系 J J J 的自变量函数,则称 x ( t ) x(t) x(t) 为泛函 J [ x ( t ) ] J[x(t)] J[x(t)]宗量函数。如上图的 f ( x ) f(x) f(x), h ( x ) h(x) h(x), g ( x ) g(x) g(x) 都成为宗量函数。

同样类似于函数中两个自变量的差对应于泛函中为宗量的变分

  • 宗量的变分:宗量的变分是指在同一函数类中的两个宗量函数间的差,即: δ x ( t ) = x ( t ) − x ∗ ( t ) . \delta x(t)=x(t)-x^*(t). δx(t)=x(t)x(t).

类似于函数取值的差在泛函关系中用泛函增量来表示,比如上图中物体的高度在某一时刻使用不同轨道的差值。

  • 泛函的增量()
    由自变量函数 x ( t ) x(t) x(t) 的变分 δ x ( t ) \delta x(t) δx(t) 引起泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的增量 Δ J = J [ x ( t ) ] − J [ x ∗ ( t ) ] = J [ x ∗ ( t ) + δ x ( t ) ] − J [ x ∗ ( t ) ] \Delta J=J[ x(t)]-J[x^*(t)]=J[x^*(t)+\delta x(t)]-J[x^*(t)] ΔJ=J[x(t)]J[x(t)]=J[x(t)+δx(t)]J[x(t)] 为泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的增量。
    即假设这里的 x ( t ) x(t) x(t) 为上图中的轨道 f ( x ) f(x) f(x), 这里的增量即可解释为使用轨道 f ( x ) f(x) f(x) 相较于使用轨道 h ( x ) h(x) h(x), g ( x ) g(x) g(x) 的物体的高度的差值。

继而,类似于函数导数的概念,在泛函中有泛函的变分的概念,即:

  • 泛函的变分
    当宗量函数 x ( t ) x(t) x(t) 有变分时,泛函 J [ x ( t ) ] J[x(t)] J[x(t)] 的增量 Δ J [ x ( t ) ] \Delta J[x(t)] ΔJ[x(t)] 可表示为 Δ J = J [ x ∗ ( t ) + δ x ( t ) ] − J [ x ( t ) ] = d J d x ∣ x ∗ δ x + 1 2 d 2 J d x 2 ∣ x ∗ ( δ x ) 2 + R , \Delta J=J[x^*(t)+\delta x(t)]-J[x(t)]=\frac{dJ}{dx}|_{x^*}\delta x+\frac{1}{2}\frac{d^2J}{dx^2}|_{x^*}(\delta x)^2+R, ΔJ=J[x(t)+δx(t)]J[x(t)]=dxdJxδx+21dx2d2Jx(δx)2+R, 其中 Δ J \Delta J ΔJ线性部分称为泛函的变分,记作 δ J \delta J δJ,即 δ J = d J d x ∣ x ∗ δ x , \delta J=\frac{dJ}{dx}|_{x^*}\delta x, δJ=dxdJxδx换句话说, 泛函的变分是泛函增量的线性主部

Lemma 1: 泛函的变分 δ J = ∂ ∂ α J [ x ( t ) + α δ x ( t ) ] ∣ α = 0 \delta J=\frac{\partial}{\partial \alpha}J[x(t)+\alpha \delta x(t)]|_{\alpha=0} δJ=αJ[x(t)+αδx(t)]α=0

Example 1: 计算泛函 J = ∫ 0 1 x 2 ( t ) d t J=\displaystyle \int_0^1x^2(t)dt J=01x2(t)dt 的变分。
δ J = ∂ ∂ α J [ x ( t ) + α δ x ( t ) ] ∣ α = 0 = ∂ ∂ α ∫ 0 1 [ x ( t ) + α δ x ( t ) ] 2 d t ∣ α = 0 = ∫ 0 1 2 [ x ( t ) + α δ x ( t ) ] δ x ( t ) d t ∣ α = 0 = ∫ 0 1 2 x ( t ) δ x ( t ) d t \begin{aligned} \delta J&=\frac{\partial}{\partial \alpha}J[x(t)+\alpha\delta x(t)]|_{\alpha=0}\\ &=\frac{\partial}{\partial \alpha}\displaystyle\int_0^1[x(t)+\alpha\delta x(t)]^2dt|_{\alpha=0}\\ &=\displaystyle\int_0^12[x(t)+\alpha \delta x(t)]\delta x(t)dt|_{\alpha=0}\\ &=\displaystyle\int_0^12x(t)\delta x(t)dt \end{aligned} δJ=αJ[x(t)+αδx(t)]α=0=α01[x(t)+αδx(t)]2dtα=0=012[x(t)+αδx(t)]δx(t)dtα=0=012x(t)δx(t)dt

变分不等式

首先来看一下什么叫做变分不等式。

变分不等式定义

变分不等式(variational inequality) V I ( F , X ) VI(F,X) VI(F,X)的正式数学定义为:

任给定义在巴纳赫空间(内积空间) Ω \Omega Ω 的一个子集 X X X 上的泛函 F : X → Ω ∗ F: X\to \Omega^* F:XΩ, 其中 Ω ∗ \Omega^* Ω Ω \Omega Ω 的对偶空间(对偶空间的解释参阅参考文献2)则 V I ( F , X ) VI(F,X) VI(F,X) 等价于寻找一个 x ∈ X x\in X xX,使得
⟨ F ( x ) , y − x ⟩ ≥ 0 \langle F(x),y-x\rangle\geq0 F(x),yx0对于任意的 y ∈ X y\in X yX成立
在最优化方面的定义:
给定 R n R^n Rn 的一个子集(闭凸集) K K K以及映射 F : K → R n F: K\to R^n F:KRn,变分不等式问题 V I ( K , F ) VI(K,F) VI(K,F) 即为寻求一个 x ∗ ∈ K x^*\in K xK 使得
( x − x ∗ ) T F ( x ∗ ) ≥ 0 (x-x^*)^TF(x^*)\geq 0 (xx)TF(x)0
对任意的 x ∈ K x\in K xK 成立。

变分不等式几何性解释

若可行点 x ∗ x^* x 为变分不等式 问题 V I ( F , X ) VI(F,X) VI(F,X) 的一个解,则映射 F F F x ∗ x^* x 点处与所有可行方向 x − x ∗ x-x^* xx, ∀ x ∈ K \forall x\in K xK 之间的夹角为锐角(acute angle)
在这里插入图片描述
问题:还是没搞懂变分不等式的变分与泛函的变分之间的关系。变分不等式variational inequality中variational是否可解释为可变的,即可变的不等式。
自我理解:求泛函的极大值和极小值问题称为变分问题,求泛函极值的方法称为变分法。当不等式的等号成立的时候取得极值,因变分不等式与泛函的极值有关故而称为变分不等式。该命名是从变分法的定义来看的。

参考文献

  1. 【优化】浅谈变分不等式与凸优化
  2. 怎么形象地理解对偶空间
  3. 变分不等式讲义
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值