京东app产品分析
01 | 如何分析app页面
1.人-货-场模型
场/货/人本是传统零售行业中的基本概念,传统的零售模式下,需要先搭建一个销售场地,铺货,引导消费者来购买。在互联网经济出现以前,这种模式是最常见的。但是在随着“新零售”概念的出现以及整体销售模式的转变,原本的“场/货/人”开始被定义为“人货场”。
- 场-引流
首页作为最大带量单位,分发效率如何评估 - 货-商品
北极星指标交易额只是数字,重点在于理解数字转化过程 - 人(用户)
成熟的app中,老用户相对稳定,应该考虑新用户获取怎么优化
2. 漏斗分析
App 的一切都是围绕交易额展开,电商交易额的本质是转化率,要通过漏斗模型来呈现。从前面数据可知,“搜索”是最大的流量入口,我们以“搜索”为例,它整体的漏斗如下图所示:
分析每层漏斗的影响因素:
- 搜索主界面的全部 UV:这是引流渠道,看用户是通过桌面图标进入搜索还是其他路径;
- 店面页 UV:搜索框搜索、热点搜索、语音搜索;
- 详情页查看 UV:客服、评论、店铺设计、商品属性;
- 加入购物车 UV:尺寸、颜色、数量;
- 提交订单 UV:物流、是否支持7天无理由退货、发票、运费;
- 收银台 UV:支付方式是否多样;
- 交易成功 UV:密码错误、冲动消费、界面异常、其他打断。
漏斗模型分析
在最后一步交易的时候,付款成功率只有 70%,这时候的问题就是——最后一步转化率太低。经数据分析工具排查,用户还没有到输入支付密码那一步,所以支付侧的问题不大,所以要去研究这部分用户在支付界面还做了什么?我们先看下界面展示,如下图所示:
页面支付方式比较齐全,支持主流的银行卡、微信支付(没有支付宝是因为竞品关系),在支付方式上问题不大。但是基于埋点数据发现有很多用户去点击右上角的订单中心,点击后如下图所示:
通过热力图模型发现有很多用户在点击地址这个位置,这里是更改不了地址的,但是用户以为能点,有可能用户因为地址错误又无法直接修改,就放弃支付。进一步就可以通过数据去验证,比如说用户研究或者直接在这里做一些地址修改的小版本上线。
02 | 场景下数据的分析
在平台范围内,最为关注的集中在分发效率上。针对分发效率的评估与优化,就能进一步提升整体的运营效率分发效率的评估除了要关注日活、留存、渗透率等常规指标外,还要找到能反映产品问题的指标。比如 CTR 和人均访问页面数,这两个指标就能很好反映产品问题。
1.CTR
CTR = 点击 UV / 曝光 UV,反映用户点击欲望的指标。
2.点击 UV
每天有多少用户点击进入到页面。
3.曝光 UV
每天有多少用户看到了页面。
4.人均访问页面数
总访问页面数(PV)/ 总访问 UV。
总访问页面数 PV:点击所有页面的次数总和是多少。
总访问 UV:点击所有页面的人数总和是多少。
03 | 新用户分析
拉新必然要衡量拉新效果和拉新优化,普通app内部数据我们肯定不太清楚,但我们可以去看整个 App 在拉新上可以优化的点。
新用户跟老用户实际上最大的差异点,是新用户有一个新人大礼包。所以我们可以去分析这一点有什么可以优化的地方。
可以看到有6 元无门槛券和 35 元的京东全品类券,同时下面有“注册领取”按钮。此时用户除了关闭页面之外,只能点击“注册领取”,点击“注册领取”之后就进入到第二个界面:
分析漏斗数据:
- 新人大礼包曝光 UV 是多少?
- “注册领取”点击 UV 是多少?
- “立即领取新人大礼包”点击 UV 是多少?
- 注册用户 UV 是多少?
这是新用户进来之后主要的过程。漏斗数据,我们分析下可以优化的空间:
-
逻辑性
新用户对 App 比较陌生,所以第一感觉是先浏览,结果设置是引导用户去注册,点击率必然不会很高,很多用户会直接点那个“X”。如果用户要进行消费,可以在支付步骤或商品详情页处提醒要先进行注册。 -
优惠券分发
首页曝光的是 6 元京东支付券和 35 元全品类券,而在 188 元大礼包里面实际上有 8 元运费券、40 元电子文娱券、20 元超市券。对于一名新用户,京东支付就很陌生,35 元全品类券需要消费 500 元才能使用,要求有点高,是否可以做两点优化。 在首页优惠