NTU4DRadLM
数据下载链接https://github.com/Junzhang 2016/NTU4DRadLM
文章目录
引言
提出NTU数据集的原因:
在恶劣环境(暴雨,雪,烟雾,雾,灰尘等)下的鲁棒SLAM,利用4D成像雷达结合热成像仪和IMU。
数据集:1.4D雷达是一种相对较新的传感器,价格不便宜2.热像仪价格高于视觉摄像机,从热图像中提取足够的特征并不容易
一、文章主要贡献
1.同时包含6个传感器和定标参数的数据集
2.提供微调的真值里程计和回环
3.同时考虑低速机器人和高速无人车平台
4.包含结构化,非结构化,半结构化环境
5.考虑中尺度和大尺度户外环境
6.综合评价三种4D雷达SLAM:4D Radar SLAM, 4D Radar-IMU SLAM, 4D Radar-thermal camera SLAM
二、NTU4DRadLM数据集
1.传感器和平台
- 6个不同的传感器:1个3D激光雷达,1个视觉相机,1个4D Radar,一个热成像仪,1个IMU,一个RTK GPS
- 两个平台:手推车1m/s,汽车 25-30km/h
所有传感器连接一个微型计算机来收集数据,该计算机是英特尔NUC NUC10i7FNH,配备32 GB内存,1TB固态硬盘,Ubuntu 18.04和ROS Melotic
2.标定
- 视觉相机和热像仪内参标定
- IMU内参标定
- 激光雷达热像仪外参标定
- 4D雷达外参标定
- 激光雷达IMU时间同步和外参标定
学习参考:多传感器时空标定–https://mp.weixin.qq.com/s/AxvAd4Bnf-RvlO-ofCvVdQ - GPS-Init外参标定
- 标定评估:利用内外参数,将激光雷达和雷达点云分别投影到RGB和热像仪上
3.数据采集
数据集涵盖结构化、非结构化、半结构化环境;小型和大型环境;低速(1m/s)和较快速(25-30km/h)平台
- 手推车
NTU停车场cp,yunan花园garden,南洋环线nyl - cars
校园主干道3条路线:loop1,loop2,loop3, 轨道长度分别为6.95公里、4.79公里和4.23公里。
注:为了保证数据采集的可靠性,作者将rosbag设置为一旦达到3 GB就自动拆分,还设置了3 GB的缓冲区大小,以防数据丢失。命令是rosbag record -b 3072–split --size 3072
4. Ground Truth Odometry:
地面真实轨迹是由紧耦合的LiDAR-视觉-惯性SLAM: R2LIVE获得的。然而,我们发现在大尺度环境下存在轨迹漂移。为了解决这个问题,我们构造了一个姿势图优化来纠正漂移。在轨迹上形成几对重叠点的环闭合。使用G2O[28]计算最优结果
5. 数据集文件说明:
在NTU4DRadLM文件夹下,有7个文件夹:6个文件夹用于存储六条路线的rosbag和地面真实里程计,一个文件夹calib用于存储校准参数。
注:地面真实里程表被保存为“gt_odom.txt”和“gt_odom.Bag”,前者由后者生成。 “calib”文件夹,它同时保存内部和外部参数。“intrinsic_xx.txt”表示内部参数,xx可以是:RGB摄像头、热像仪、IMU。“extrinsic_xx_to_xx.txt”,表示从一个传感器到另一个传感器的外部。遵循Kitti格式
三、NTU4DRADLM数据集的评估
三种方法对比:Pure 4D Radar,4D Radar-IMU,4D Radar-Thermal.
开源工具:rpg_trajectory_evaluation
1、定量分析:
对于“GICP”、“GICP-LC”和“FAST-LIO”,所有6条路径都进行了实验。
(纯翻)如图所示。对于“4DRT-SLAM”,由于性能不是很好,实验仅在两个小数据集“cp”和“garard”上进行,如图8所示。可以观察到:1)GICP的性能优于FAST-LIO,但在数据集“loop1”上除外。通过分析,可能的解释是:GICP是一种直接基于点云配准的方法,因此它不提取用于里程计算的几何特征。然而,FAST-LIO最初是为LiDAR设计的,它依赖于平面和边缘特征提取来进行里程计计算。考虑到4D雷达点云具有更强的噪声和稀疏性,提取这些特征更加不准确。因此,FAST-LIO在4D上表现不佳也就不足为奇了。
2)在环路闭合的情况下,与GICP相比,GICP-LC的性能有显著提高。这很简单,因为有效的循环闭包是优化全局里程计的良好约束。
3)FAST-LIO在“花园”数据集上中途失败。可能的原因是FAST-LIO依赖于里程计算中的平面特征提取。然而,花园是一个非常杂乱无章的环境,平面特征较少。因此,它很容易无法提取有效的平面特征,从而可能失去跟踪并在中途失败。
4)对于数据集“loop1”,FAST-LIO表现最好,GICP-LC和GICP的估计轨迹是相同的。这是因为没有触发循环闭合,因此不执行图形优化。同时,“loop1”数据集是一个半结构化的环境,因此可以提取更多有效的平面特征,从而使FAST-LIO能够很好地工作。
5)4DRT-SLAM显示了其有效性,但表现最差。这主要是因为4DRT-SLAM仍处于早期开发阶段。还有很大的改进空间,比如对4D雷达的原始点云进行预处理,以减少噪声点,避免鬼点。
2、定性分析:
将图10中由“gicp”、“gicp-lc”和“fast-lio”构建的点云图可视化