2019-10-06 因果系统的理解

本文深入探讨了因果系统的定义及其在离散和连续系统中的表现形式,包括差分方程、微分方程和脉冲传递函数,强调了因果系统中当前输出仅依赖于过去和当前输入的特性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因果系统的定义

因果系统(Causal System)指具有因果性的系统。若系统在某时刻 t t t 的输出仅取决于时刻 t t t 及在 t t t 之前的输入,而与 t t t 之后的输入无关,则称系统具有因果性1

简言之,现在的行为只和 过去和现在 有关,与未来无关。

离散因果系统的两种形式

对于单输入单输出( SISO )的线性定常离散系统:

  1. 离散系统的差分方程
    a n y ( k + n ) + a n − 1 y ( k + n − 1 ) + ⋯ + a 1 y ( k + 1 ) + a 0 y ( k ) a_ny(k+n)+a_{n-1}y(k+n-1)+\cdots+a_1y(k+1)+a_0y(k) any(k+n)+an1y(k+n1)++a1y(k+1)+a0y(k) = b m u ( k + m ) + b m − 1 u ( k + m − 1 ) + ⋯ + b 1 u ( k + 1 ) + b 0 u ( k ) =b_mu(k+m)+b_{m-1}u(k+m-1)+\cdots+b_1u(k+1)+b_0u(k) =bmu(k+m)+bm1u(k+m1)++b1u(k+1)+b0u(k)
  2. 离散系统的脉冲传递函数形式
    G ( z ) = Y ( z ) U ( z ) = b m z m + b m − 1 z m − 1 + ⋯ + b 1 z + b 0 a n z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 G(z)=\frac{Y(z)}{U(z)}=\frac{b_mz^m+b_{m-1}z^{m-1}+\cdots+b_1z+b_0}{a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0} G(z)=U(z)Y(z)=anzn+an1zn1++a1z+a0bmzm+bm1zm1++b1z+b0

连续因果系统的两种形式

对于单输入单输出( SISO )的线性定常连续系统:

  1. 连续系统的微分方程
    a n d n y ( t ) d t n + a n − 1 d n − 1 y ( t ) d t n − 1 + ⋯ + a 1 d y ( t ) d t + a 0 y ( t ) a_n\frac{d^ny(t)}{dt^n}+a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}}+\cdots+a_1\frac{dy(t)}{dt}+a_0y(t) andtndny(t)+an1dtn1dn1y(t)++a1dtdy(t)+a0y(t) = b m d m u ( t ) d t m + b m − 1 d m − 1 u ( t ) d t m − 1 + ⋯ + b 1 d u ( t ) d t + b 0 u ( t ) =b_m\frac{d^mu(t)}{dt^m}+b_{m-1}\frac{d^{m-1}u(t)}{dt^{m-1}}+\cdots+b_1\frac{du(t)}{dt}+b_0u(t) =bmdtmdmu(t)+bm1dtm1dm1u(t)++b1dtdu(t)+b0u(t)
  2. 连续系统的脉冲传递函数形式
    G ( s ) = Y ( s ) U ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 G(s)=\frac{Y(s)}{U(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+\cdots+b_{1}s+b_0}{a_ns^n+a_{n-1}s^{n-1}+\cdots+a_{1}s+a_0} G(s)=U(s)Y(s)=ansn+an1sn1++a1s+a0bmsm+bm1sm1++b1s+b0

总结

对于因果系统,必须存在 n ≥ m n≥m nm。因为一个微分就是下一个时间点的信息,所以 u u u 的微分量的最高次项不能大于 y y y 的,否则,下一时刻的输入就会影响本时刻的输出。

用文艺的说法来解释就是:这近五十年的时间,这世间几多变化,但所有的未来都藏在过去(和现在)。——来自公众号“贞观”,侵删

(注:不够严谨的地方望指正,谢谢?)


  1. 周凤岐,周军,郭建国. 现代控制理论基础. 西安:西北工业大学出版社,2011. ↩︎

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DR-ZF-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值