因果系统的定义
因果系统(Causal System)指具有因果性的系统。若系统在某时刻 t t t 的输出仅取决于时刻 t t t 及在 t t t 之前的输入,而与 t t t 之后的输入无关,则称系统具有因果性1。
简言之,现在的行为只和 过去和现在 有关,与未来无关。
离散因果系统的两种形式
对于单输入单输出( SISO )的线性定常离散系统:
- 离散系统的差分方程 ;
a n y ( k + n ) + a n − 1 y ( k + n − 1 ) + ⋯ + a 1 y ( k + 1 ) + a 0 y ( k ) a_ny(k+n)+a_{n-1}y(k+n-1)+\cdots+a_1y(k+1)+a_0y(k) any(k+n)+an−1y(k+n−1)+⋯+a1y(k+1)+a0y(k) = b m u ( k + m ) + b m − 1 u ( k + m − 1 ) + ⋯ + b 1 u ( k + 1 ) + b 0 u ( k ) =b_mu(k+m)+b_{m-1}u(k+m-1)+\cdots+b_1u(k+1)+b_0u(k) =bmu(k+m)+bm−1u(k+m−1)+⋯+b1u(k+1)+b0u(k) - 离散系统的脉冲传递函数形式;
G ( z ) = Y ( z ) U ( z ) = b m z m + b m − 1 z m − 1 + ⋯ + b 1 z + b 0 a n z n + a n − 1 z n − 1 + ⋯ + a 1 z + a 0 G(z)=\frac{Y(z)}{U(z)}=\frac{b_mz^m+b_{m-1}z^{m-1}+\cdots+b_1z+b_0}{a_nz^n+a_{n-1}z^{n-1}+\cdots+a_1z+a_0} G(z)=U(z)Y(z)=anzn+an−1zn−1+⋯+a1z+a0bmzm+bm−1zm−1+⋯+b1z+b0
连续因果系统的两种形式
对于单输入单输出( SISO )的线性定常连续系统:
- 连续系统的微分方程 ;
a n d n y ( t ) d t n + a n − 1 d n − 1 y ( t ) d t n − 1 + ⋯ + a 1 d y ( t ) d t + a 0 y ( t ) a_n\frac{d^ny(t)}{dt^n}+a_{n-1}\frac{d^{n-1}y(t)}{dt^{n-1}}+\cdots+a_1\frac{dy(t)}{dt}+a_0y(t) andtndny(t)+an−1dtn−1dn−1y(t)+⋯+a1dtdy(t)+a0y(t) = b m d m u ( t ) d t m + b m − 1 d m − 1 u ( t ) d t m − 1 + ⋯ + b 1 d u ( t ) d t + b 0 u ( t ) =b_m\frac{d^mu(t)}{dt^m}+b_{m-1}\frac{d^{m-1}u(t)}{dt^{m-1}}+\cdots+b_1\frac{du(t)}{dt}+b_0u(t) =bmdtmdmu(t)+bm−1dtm−1dm−1u(t)+⋯+b1dtdu(t)+b0u(t) - 连续系统的脉冲传递函数形式;
G ( s ) = Y ( s ) U ( s ) = b m s m + b m − 1 s m − 1 + ⋯ + b 1 s + b 0 a n s n + a n − 1 s n − 1 + ⋯ + a 1 s + a 0 G(s)=\frac{Y(s)}{U(s)}=\frac{b_ms^m+b_{m-1}s^{m-1}+\cdots+b_{1}s+b_0}{a_ns^n+a_{n-1}s^{n-1}+\cdots+a_{1}s+a_0} G(s)=U(s)Y(s)=ansn+an−1sn−1+⋯+a1s+a0bmsm+bm−1sm−1+⋯+b1s+b0
总结
对于因果系统,必须存在 n ≥ m n≥m n≥m。因为一个微分就是下一个时间点的信息,所以 u u u 的微分量的最高次项不能大于 y y y 的,否则,下一时刻的输入就会影响本时刻的输出。
用文艺的说法来解释就是:这近五十年的时间,这世间几多变化,但所有的未来都藏在过去(和现在)。——来自公众号“贞观”,侵删
(注:不够严谨的地方望指正,谢谢?)
周凤岐,周军,郭建国. 现代控制理论基础. 西安:西北工业大学出版社,2011. ↩︎