一、连续时间基本信号
①普通信号:
直流、正弦、指数类(元素半衰期、电容充放电)、抽样...
其中,指数类信号:虚指数、复指数(弹簧阻尼震动规律)
Tips: Euler公式建立了正、余弦信号与虚指数信号的关系
②奇异信号:(函数本身或其导数或高阶导数具有不连续点-跳变点)
阶跃、冲激、斜坡、冲击偶信号...
Tips: 门信号:表示任意的矩形脉冲信号(矩形波或方波)(单位阶跃信号)
二、连续信号中的奇异信号
① 奇异信号(singular signals)不是指一种特定的信号类型,而是指那些在数学处理或信号处理中表现出某些“奇异”行为的信号。它们通常不是普通的、可以直观理解的信号(如正弦波、方波等),而是在某些点上具有非标准的数学属性(如无限大、不连续点等),从而在分析和处理这些信号时需要特殊的方法。
② 如冲激函数(Dirac delta函数)、阶跃函数(Unit step function)和符号函数(Sign function),在信号处理和通信系统分析中扮演着重要的角色。
-
冲激函数(Dirac delta函数)(偶):在数学和信号处理中,Dirac delta函数是一种理想化的奇异函数,其处处为0,但在原点无限大,并且其全域的积分等于1。它在理论上被用来模拟瞬间发生的脉冲事件。尽管Dirac delta函数在严格的数学意义上不是一个函数,但它在工程和物理学中作为一种理想化模型被广泛使用。Link: “狄拉克”、“冲击信号的抽样和展缩特性”
-
阶跃函数(Unit step function):这是另一种常见的奇异信号,其值在某一点之前为0,在该点及之后为1。它可以用来表示信号的突然开始(突然的脉冲信号)。
-
符号函数(Sign function):符号函数在正值时为+1,在负值时为-1,在0处通常定义为0(虽然在某些上下文中可能会有不同的定义)。它用于表示数值的正负方向
-
Tips: 冲激信号与阶跃信号存在微积分关系
③ 微积分提供了处理连续变化量的数学工具,而分布理论(特别是在处理冲激函数时)则扩展了传统数学函数的概念,允许我们在更广泛的情境中讨论和使用奇异信号。
三、连续时间信号的基本运算
① 包含:翻转(180°)、尺度变换(压缩/拓展)、时移、相加相乘、微分(求导)积分
② 不连续点的微分(不连续点处的冲激函数强度等于信号的跳跃值-左右界限值的差)
③ *用基本信号表示连续信号
-
冲激函数(Dirac Delta函数):虽然在严格的数学意义上不是一个函数,冲激函数在理论上用于表示时间或空间中的一个瞬间脉冲。在连续信号中,任何信号都可以通过冲激函数的加权和(或积分)来表示,这在数学上称为信号的冲激响应或冲激分解。
-
阶跃函数(Unit Step Function):阶跃函数是一种在某一点突然从0跳变到1的函数,它在建模信号的开始或切换过程中非常有用。连续信号的变化点往往可以通过阶跃函数或其变体来描述。
-
正弦波和余弦波:正弦波和余弦波是描述周期性变化的基本信号,它们在分析和合成信号时非常重要。任何周期性的连续信号都可以通过傅里叶级数(即正弦波和余弦波的线性组合)来表示。
-
指数函数:指数函数在表示衰减或增长过程中非常重要,例如,在分析电路的自然响应或强迫响应时。指数函数也是拉普拉斯变换和傅里叶变换中的关键元素,这些变换用于信号分析和系统分析。
-
复指数函数:复指数函数是正弦波和余弦波的一般化形式,通过欧拉公式可以将其与正弦波和余弦波联系起来。在频域分析中,复指数函数是非常有用的工具,因为它可以简化傅里叶变换的表示和计算。
通过这些基本信号的操作和组合,如叠加、时间平移、缩放等,可以构造或近似任何实际的连续信号。这种表示方式不仅有助于理解信号的基本结构和特性,还是信号处理、滤波器设计、系统分析等领域中的核心技术。
四、离散时间基本信号
①包括:实指数序列(人口增长趋势图、一次性电池放电测试图) 、虚指数序列&正弦序列、复指数序列(实部和虚部)、单位脉冲序列(有位移的单位脉冲序列)、单位阶跃序列、矩形序列、斜坡序列...
②判断一个离散序列是否为周期信号:
计算其周期是否为有理数(π为无理数)
③复指数序列:r>1时为增幅正弦信号;0<r<1时为衰减正弦信号;(呈指数规律)
④单位脉冲序列的好处:可以表示任意离散时间序列(加权表示)
⑤单位脉冲序列与单位阶跃序列的关系:
单位脉冲序列是单位阶跃序列的差分;
单位阶跃序列是单位脉冲序列的求和;
⑥矩形序列 & 斜坡序列 :(单位斜坡信号是单位阶跃信号的求和;反之为差分)
五、连续阶跃信号与离散阶跃信号在 0 点处的特殊差异:
-
连续信号的阶跃函数,通常称为单位阶跃函数u(t),在数学上定义为在t<0时u(t)=0,而在t>0时u(t)=1。在t=0处的定义可能因上下文而异,但常见的定义是u(0)=0.5,这样的定义是为了数学上的方便,特别是在信号处理和系统分析中的对称性考虑。然而,这个定义并不影响单位阶跃函数在连续信号分析中的应用,因为在连续域中,单一点的值不影响信号的整体性质,如积分或微分。
-
离散信号的阶跃函数,通常表示为u[n],在离散时间域中定义。由于离散信号是在特定的时间点定义的,每个点的值都具有明确的意义。在离散时间域中,阶跃函数在n<0时定义为0,在n≥0时定义为1。这里,n=0处的值直接定义为1,反映了在离散时间尺度上,时间原点n=0是明确包含在信号的定义中的。
这种在0点处定义的差异反映了连续信号与离散信号处理中的一个关键概念性差异:在连续时间中,单个点通常不会影响整体信号的属性,而在离散时间中,每个时间点的值都对信号的性质有直接影响。此外,这种差异也体现了在离散和连续信号处理中处理时间概念的不同方式,以及在对信号进行数学分析和实际应用时的考量。(相同点:但都表示了单边特性)
六、离散时间信号的基本运算
①包括:翻转(180°)、位移、抽取与内插、序列相加、序列相乘、差分和求和;
②差分:(对应连续时间信号的微分)
同时在离散时间信号中,差分和求和是一种互为对应的逆运算(阶跃为脉冲的和)
③处理 x[k] → x[2k-3] 的正确步骤:
x[k] → x[2k] → x[2k-3] perfect
七、信号分解
①包括:信号分解为直流分量与交流分量、偶分量与奇分量、实部分量与虚部分量、(delta)δ信号的线性组合
②离散信号的奇偶分量;(连续信号的同理;要巧用连续离散的对应关系)
③ 如何构建一个信号的实部分量与虚部分量(服务于 傅里叶变换 信号)
首先,求出其共轭函数;(离散同理)
④ 把复杂信号表示为基本信号——(便于)信号分析的基本思想
时域当中把连续信号表示为(delta)Δt 信号;
频域当中把连续信号表示为正弦类信号;
⑤ 不同的连续信号都可以表示为冲激信号及其时移的线性组合,
(不同的信号只是它们对应的系数不同)
⑥ 任意离散序列也可以表示为脉冲序列及其位移的线性组合
八、信号的时域分析举例
推荐参考这篇总结性的文章:【信号与系统->系统的时域分析】https://blog.csdn.net/qq_45379724/article/details/109359260

u[k] 其中 u 直接读作英文字母 "U" 的名称(文献中较多作为单位阶跃函数的标记)
而不同于:μ[k] 其中 μ 是希腊字母 "mu" 的英文名称,读作 "mew" ;
补充:
从定义上来说,冲激序列是阶跃序列的一阶差分。具体来说,冲激序列可以看作是阶跃序列的变化率,或者说,是阶跃序列的导数(在离散域中,通过差分来表述; 而在连续域中,用 导数 / 微分来表述;)数学上,这可以表示为:δ[k]=u[k]−u[k−1](离散域中阶跃序列的一阶差分);
这种关系是 离散 / 连续 时间信号处理中的一个基本概念,有助于理解和分析系统的响应,特别是在研究线性时不变(LTI)系统的冲激响应和阶跃响应时。


Tips: 离散序列一般要先平移再压缩,而不能像连续序列那样先压缩再平移;
准确来说,离散序列中用 “抽取” 来代替 “压缩” 一词更为准确;



*附:
x (k) — — 连续序列
x [k] — — 离散序列