【信号与系统】信号的时域分析

信号的时域分析



关于信号

时 间 离 散 { 幅 值 离 散 , 数 字 信 号 幅 值 连 续 , 抽 样 信 号   时 间 连 续 { 幅 值 离 散 , 脉 冲 信 号 、 量 化 信 号 幅 值 连 续 , 模 拟 信 号 时间离散 \begin{cases} 幅值离散, & 数字信号 \\[5ex] 幅值连续, & 抽样信号 \end{cases}\\\ \\ 时间连续 \begin{cases} 幅值离散, & 脉冲信号 、 量化信号 \\[5ex] 幅值连续, & 模拟信号 \end{cases} ,, ,,

线 性 系 统 : C 1 e 1 ( t ) + C 2 e 2 ( t ) = e ( t ) r ( t ) = C 1 r 1 ( t ) + C 2 r 2 ( t )   时 不 变 系 统 : f [ e ( t − t 0 ) ] ⇒ r ( t − t 0 )   因 果 系 统 : r ( t 0 ) = f ( e ( t 0 ) ) 线性系统:\\ C_1e_1(t)+C_2e_2(t)=e(t)\\ r(t)=C_1r_1(t)+C_2r_2(t)\\\ \\ 时不变系统:\\ f[e(t-t_0)]\Rightarrow r(t-t_0)\\\ \\ 因果系统:\\ r(t_0)=f(e(t_0)) 线C1e1(t)+C2e2(t)=e(t)r(t)=C1r1(t)+C2r2(t) f[e(tt0)]r(tt0) r(t0)=f(e(t0))

关于冲激量

冲 激 量 是 对 源 而 言 的 、 有 源 才 有 冲 激 量 冲 激 电 压 导 致 电 感 电 流 改 变 冲 激 电 流 导 致 电 容 电 压 改 变 冲激量是对源而言的、有源才有冲激量\\ 冲激电压导致电感电流改变\\ 冲激电流导致电容电压改变
冲 激 量 是 在 t = 0 时 刻 的 若 无 冲 激 量 , 则 r ( n ) ( 0 − ) = r ( n ) ( 0 + ) 不 管 是 用 经 典 法 还 是 变 换 域 法 冲 激 量 匹 配 法 都 是 必 要 步 骤   冲 激 量 匹 配 法 可 以 只 匹 配 输 入 中 的 冲 激 量 冲激量是在t=0时刻的\\ 若无冲激量,则\\ r^{(n)}(0_{-})=r^{(n)}(0_{+}) \\ 不管是用经典法还是变换域法\\ 冲激量匹配法都是必要步骤\\\ \\ 冲激量匹配法可以只匹配输入中的冲激量 t=0r(n)(0)=r(n)(0+) 
∫ − ∞ ∞ f ( φ ( t ) ) ⋅ δ ( g ( t ) ) d t = ∫ − ∞ ∞ f ( φ ( g ‾ ( J ) ) ) ⋅ δ ( J ) d J = f ( φ ( g ‾ ( 0 ) ) ) \int_{-\infty}^\infty f(\varphi(t))\cdot\delta(g(t))dt\\=\int_{-\infty}^\infty f(\varphi(\overline g(J)))\cdot\delta(J)dJ\\ =f(\varphi(\overline g(0))) f(φ(t))δ(g(t))dt=f(φ(g(J)))δ(J)dJ=f(φ(g(0)))
单 位 阶 跃 函 数 u ( t ) 的 导 数 为 δ ( t )   筛 选 性 : ∫ − ∞ + ∞ δ ( t − t 0 ) f ( t ) d t = f ( t 0 )   f ( t ) δ ( t ) = f ( 0 ) δ ( t ) 单位阶跃函数u(t)的导数为\delta(t)\\\ \\ 筛选性: \int_{-\infty}^{+\infty}\delta(t-t_0)f(t)dt=f(t_0)\\\ \\ f(t)\delta(t)=f(0)\delta(t) u(t)δ(t) +δ(tt0)f(t)dt=f(t0) f(t)δ(t)=f(0)δ(t)

关于画图

乘数写在器件后面

关于阶跃响应与冲激响应

阶 跃 响 应 : g ( t ) 冲 激 响 应 : h ( t )   g ′ ( t ) = h ( t )   这 两 个 都 是 r z s   h ( t ) ∗ u ( t ) = g ( t ) h ( t ) ∗ u ( t − τ ) = g ( t − τ ) 阶跃响应:g(t)\\ 冲激响应:h(t)\\\ \\ g'(t)=h(t)\\\ \\ 这两个都是r_{zs}\\\ \\ h(t)*u(t)=g(t)\\ h(t)*u(t-\tau)=g(t-\tau) g(t)h(t) g(t)=h(t) rzs h(t)u(t)=g(t)h(t)u(tτ)=g(tτ)

关于卷积

f 1 ( t ) ∗ f 2 ( t ) = ∫ − ∞ + ∞ f 1 ( τ ) f 2 ( t − τ ) d τ   交 换 律 : f 1 ∗ f 2 = f 2 ∗ f 1   结 合 律 : f 1 ∗ ( f 2 ∗ f 3 ) = ( f 1 ∗ f 2 ) ∗ f 3   分 配 律 : f 1 ∗ ( f 2 + f 3 ) = f 1 ∗ f 2 + f 1 ∗ f 3   f ( t ) ∗ δ ( t ) = f ( t )   a [ f 1 ∗ f 2 ] = [ a f 1 ] ∗ f 2   d [ f 1 ∗ f 2 ] d t = d f 1 d t ∗ f 2 f_1(t)*f_2(t)=\int_{-\infty}^{+\infty}f_1(\tau)f_2(t-\tau)d\tau\\\ \\ 交换律:f_1*f_2=f_2*f_1\\\ \\ 结合律:f_1*(f_2*f_3)=(f_1*f_2)*f_3\\\ \\ 分配律:f_1*(f_2+f_3)=f_1*f_2+f_1*f_3\\\ \\ f(t)*\delta(t)=f(t)\\\ \\ a[f_1*f_2]=[af_1]*f_2\\\ \\ \frac{d[f_1*f_2]}{dt}=\frac{df_1}{dt}*f_2 f1(t)f2(t)=+f1(τ)f2(tτ)dτ f1f2=f2f1 f1(f2f3)=(f1f2)f3 f1(f2+f3)=f1f2+f1f3 f(t)δ(t)=f(t) a[f1f2]=[af1]f2 dtd[f1f2]=dtdf1f2
在这里插入图片描述
∫ − ∞ ∞ f ( τ ) u ( τ − a ) u ( t − τ − b ) d τ = u ( t − b − a ) ∫ a t − b f ( τ ) d τ   e − t u ( t ) ∗ e − t u ( t ) = t e − t u ( t ) \int_{-\infty}^\infty f(\tau)u(\tau-a)u(t-\tau-b)d\tau=u(t-b-a)\int_{a}^{t-b}f(\tau)d\tau\\\ \\ e^{-t}u(t)* e^{-t}u(t)=te^{-t}u(t) f(τ)u(τa)u(tτb)dτ=u(tba)atbf(τ)dτ etu(t)etu(t)=tetu(t)

系 统 并 联 : r ( t ) = e ( t ) ∗ Σ h i ( t )   系 统 串 联 : r ( t ) = e ( t ) ∗ [ h 1 ( t ) ∗ h 2 ( t ) ∗ ⋯   ] 系统并联:\\ r(t)=e(t)*\Sigma h_i(t)\\\ \\ 系统串联:\\ r(t)=e(t)*[h_1(t)*h_2(t)*\cdots] r(t)=e(t)Σhi(t) r(t)=e(t)[h1(t)h2(t)]

计算解的各个部分

关于解的说明

全 解 : r 微 分 方 程 齐 次 解 ( 自 由 响 应 ) : r h 微 分 方 程 特 解 ( 强 迫 响 应 ) : r p 零 输 入 响 应 : r z e r o i n p u t , r z i 零 状 态 响 应 : r z e r o s t a t e , r z s   r = r h + r p r = r z i + r z s r = r z i + e n t e r ( t ) ∗ h ( t )   h ( t ) , g ( t ) 都 是 对 r z s 而 言 的 , 都 是 r z s   r z s = h ( t ) ∗ e ( t ) e ( t ) = [ e ( 0 + ) u ( t ) + ∫ 0 ∞ d e ( τ ) d τ u ( t − τ ) d τ ] 全解:r\\ 微分方程齐次解(自由响应):r_{h}\\ 微分方程特解(强迫响应):r_{p}\\ 零输入响应:r_{zeroinput},r_{zi}\\ 零状态响应:r_{zerostate},r_{zs}\\\ \\ r=r_{h}+r_{p}\\r=r_{zi}+r_{zs}\\r=r_{zi}+enter(t)*h(t)\\\ \\ h(t),g(t)都是对r_{zs}而言的,都是r_{zs}\\\ \\ r_{zs}=h(t)*e(t)\\ e(t)=[e(0_{+})u(t)+\int_0^\infty\frac{de(\tau)}{d\tau}u(t-\tau)d\tau] r()rh()rprzeroinput,rzirzerostate,rzs r=rh+rpr=rzi+rzsr=rzi+enter(t)h(t) h(t),g(t)rzsrzs rzs=h(t)e(t)e(t)=[e(0+)u(t)+0dτde(τ)u(tτ)dτ]

通过经典法

工科解微分方程公式与方法集合

{ 一 , 先 进 行 冲 激 量 匹 配 法 求 出 解   r   在 r ( 0 ) , ( t = 0 ) 时 候 的 冲 激 量   二 , 通 过 冲 激 量 匹 配 法 的 结 果 , 以 及 r ( n ) ( 0 − ) , 求 出 r ( n ) ( 0 + )   三 , 通 过 经 典 法 设 出 r h , 此 时 t > 0 也 就 是 不 考 虑 冲 激 量 再 通 过 经 典 法 或 者 微 分 算 子 法 解 出 特 解 r p   四 , 通 过 r = r h + r p , r ′ , r ( n ) ( 0 + ) 解 出 r h 中 的 系 数 此 时 已 有 r , r h , r p   五 , 若 要 完 整 的 r , 还 需 加 上 冲 激 量 匹 配 匹 出 的 冲 激 量   若 要 求 r z i { 等 式 右 端 为 0 , 左 端 带 入 r ( n ) ( 0 − ) , 重 复 上 述 步 骤 此 时 显 然 没 有 冲 激 量 , 且 r p = 0   得 出 的 r 为 r z i , 求 r z i ′ , 带 入 r ( n ) ( 0 − ) , 得 系 数 解   若 要 求 r z s { 等 式 右 端 为 输 入 , 左 端 带 入 r ( n ) ( 0 − ) = 0 , 重 复 上 述 步 骤 此 时 冲 激 量 匹 配 出 来 的 跳 变 量 即 为 r ( n ) ( 0 + ) , 且 r p ≠ 0   得 出 的 r 为 r z s , 求 r z s ′ , 带 入 r ( n ) ( 0 + ) , 得 系 数 解   最 后 加 上 冲 激 量 匹 配 出 来 的 冲 激 量 \left \{ \begin{array}{c} 一,先进行冲激量匹配法\\求出解~r ~在r(0),(t=0)时候的冲激量\\\ \\ 二,通过冲激量匹配法的结果,以及r^{(n)}(0_{-}),求出r^{(n)}(0_{+})\\\ \\ 三,通过经典法设出r_h,此时t>0也就是不考虑冲激量\\ 再通过经典法或者微分算子法解出特解r_p\\\ \\ 四,通过r=r_h+r_p,r', r^{(n)}(0_{+})解出r_h中的系数\\此时已有r,r_h,r_p\\\ \\ 五,若要完整的r,还需加上冲激量匹配匹出的冲激量 \end{array} \right.\\\ \\ 若要求r_{zi} \left \{ \begin{array}{c} 等式右端为0,左端带入r^{(n)}(0_{-}),重复上述步骤 \\ 此时显然没有冲激量,且r_p=0\\\ \\ 得出的r为r_{zi},求r_{zi}',带入r^{(n)}(0_{-}),得系数解 \end{array} \right.\\\ \\ 若要求r_{zs} \left \{ \begin{array}{c} 等式右端为输入,左端带入r^{(n)}(0_{-})=0,重复上述步骤 \\ 此时冲激量匹配出来的跳变量即为r^{(n)}(0_{+}),且r_p\ne0\\\ \\ 得出的r为r_{zs},求r_{zs}',带入r^{(n)}(0_{+}),得系数解\\\ \\ 最后加上冲激量匹配出来的冲激量 \end{array} \right.  r r(0)(t=0) r(n)(0)r(n)(0+) rht>0rp r=rh+rprr(n)(0+)rhrrhrp r rzi0r(n)(0)rp=0 rrzirzir(n)(0) rzsr(n)(0)=0r(n)(0+)rp=0 rrzsrzsr(n)(0+) 

对于离散系统

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值