关于计算离散 LTI 的冲激(脉冲)响应:解释如何根据题干给定条件求解 h[0] 和 h[1]的值

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这个例题中,我们需要求解系统的单位脉冲响应 ( h[k] )。为了求解 ( h[k] ),我们需要利用系统的差分方程,并根据给定的初始条件进行展开和求解。

1. 初始条件的应用

单位脉冲信号的定义是:
δ [ 0 ] = 1 , \delta[0] = 1, δ[0]=1,
δ [ k ] = 0 for k ≠ 0. \delta[k] = 0 \quad \text{for} \quad k \neq 0. δ[k]=0fork=0.

所以,在 ( k = 0 ) 时,差分方程为:
h [ 0 ] − 3 h [ − 1 ] + 2 h [ − 2 ] = δ [ 0 ] = 1 h[0] - 3h[-1] + 2h[-2] = \delta[0] = 1 h[0]3h[1]+2h[2]=δ[0]=1
根据单位脉冲信号的特性, ( h[k] = 0 ) 对于 ( k < 0 ),所以 ( h[-1] = 0 ) 和 ( h[-2] = 0 )。因此:
h [ 0 ] − 3 ( 0 ) + 2 ( 0 ) = 1 h[0] - 3(0) + 2(0) = 1 h[0]3(0)+2(0)=1
h [ 0 ] = 1 h[0] = 1 h[0]=1

2. ( k = 1 ) 时的展开

在 ( k = 1 ) 时,差分方程为:
h [ 1 ] − 3 h [ 0 ] + 2 h [ − 1 ] = δ [ 1 ] = 0 h[1] - 3h[0] + 2h[-1] = \delta[1] = 0 h[1]3h[0]+2h[1]=δ[1]=0
同样, ( h[-1] = 0 ),所以:
h [ 1 ] − 3 h [ 0 ] + 2 ( 0 ) = 0 h[1] - 3h[0] + 2(0) = 0 h[1]3h[0]+2(0)=0
h [ 1 ] − 3 h [ 0 ] = 0 h[1] - 3h[0] = 0 h[1]3h[0]=0
代入 ( h[0] = 1 ):
h [ 1 ] − 3 ( 1 ) = 0 h[1] - 3(1) = 0 h[1]3(1)=0
h [ 1 ] = 3 h[1] = 3 h[1]=3

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值