在这个例题中,我们需要求解系统的单位脉冲响应 ( h[k] )。为了求解 ( h[k] ),我们需要利用系统的差分方程,并根据给定的初始条件进行展开和求解。
1. 初始条件的应用
单位脉冲信号的定义是:
δ
[
0
]
=
1
,
\delta[0] = 1,
δ[0]=1,
δ
[
k
]
=
0
for
k
≠
0.
\delta[k] = 0 \quad \text{for} \quad k \neq 0.
δ[k]=0fork=0.
所以,在 ( k = 0 ) 时,差分方程为:
h
[
0
]
−
3
h
[
−
1
]
+
2
h
[
−
2
]
=
δ
[
0
]
=
1
h[0] - 3h[-1] + 2h[-2] = \delta[0] = 1
h[0]−3h[−1]+2h[−2]=δ[0]=1
根据单位脉冲信号的特性, ( h[k] = 0 ) 对于 ( k < 0 ),所以 ( h[-1] = 0 ) 和 ( h[-2] = 0 )。因此:
h
[
0
]
−
3
(
0
)
+
2
(
0
)
=
1
h[0] - 3(0) + 2(0) = 1
h[0]−3(0)+2(0)=1
h
[
0
]
=
1
h[0] = 1
h[0]=1
2. ( k = 1 ) 时的展开
在 ( k = 1 ) 时,差分方程为:
h
[
1
]
−
3
h
[
0
]
+
2
h
[
−
1
]
=
δ
[
1
]
=
0
h[1] - 3h[0] + 2h[-1] = \delta[1] = 0
h[1]−3h[0]+2h[−1]=δ[1]=0
同样, ( h[-1] = 0 ),所以:
h
[
1
]
−
3
h
[
0
]
+
2
(
0
)
=
0
h[1] - 3h[0] + 2(0) = 0
h[1]−3h[0]+2(0)=0
h
[
1
]
−
3
h
[
0
]
=
0
h[1] - 3h[0] = 0
h[1]−3h[0]=0
代入 ( h[0] = 1 ):
h
[
1
]
−
3
(
1
)
=
0
h[1] - 3(1) = 0
h[1]−3(1)=0
h
[
1
]
=
3
h[1] = 3
h[1]=3