ECCV 2022《Few-Shot Classification with Contrastive Learning》

0 Abstract

  1. 作者指出他们提出了一种新颖的基于对比学习的FSL网络框架,这种框架可以将对比学习很好的集成到现在广泛使用的two-stage training paradigm(包括pre-training和meta-learning两个stages)
  2. 在pre-training stage,提出了self-supervised constrastive loss,包括两种对比关系:1️⃣feature vector .vs. feature map2️⃣feature map .vs. feature map
    更好的利用global information和local information学习到比较好的初始化表征(initial representations)。
  3. 在meta-learning stage,提出了cross-view episodic training mechanism,对同一轮次的两个不同视角进行最近中心点分类(nearest centroid classification),并基于此采用一种distance-scaled contrastive loss。这两种strategies使model讷讷狗狗克服不同视角之间的bias,提高表征的可迁移能力。

Keywords:FSL,Meta Learning,Constrastive learning,Cross-view episodic learning
tips:本文的cross-view我个人理解就是对同一张图片用不同的data augmentation后得到的图片彼此属于不同view。

1 Introduction

👇图是overview of their framework
在这里插入图片描述

  1. In this work, we propose a contrastive learning-based framework that seamlessly integrates contrastive learning into the pre-training and meta-training stages to tackle the FSL problem.
  2. training stage:两种contrastive loss function,分别是s(supervised)和ss(self-supervised)的,考虑了global和local的信息。
  3. meta-learning stage:a cross-view episodic training(CVET) mechanism来提取可概括的表征,并用nearest-centroid classification和inter-instance distance scaling,对不同数据增强方式下的Q1和Q2分别计算其与原型之间的相似度(具体看framework)
  4. baseline:FEAT
  5. preliminary:经典的meta-learning问题setting,不再赘述

2 Pre-Training

  1. 通过framework图可知,pre-training阶段总共有4个loss function:
    1️⃣LCE是分类器的交叉熵损失函数
    2️⃣Global self-supervised contrastive loss
    (1)目标:“aims to enhance the similarity between the views of the same image, while reducing the similarity between the views of different images”。
    (2)equation:
    在这里插入图片描述
    其中在这里插入图片描述
    (3)说明:
    2N表示training dataset的N张images使用某两种数据增强方式后得到的图片数。hi表示提取出的图像特征经过GAP(global average pooling)后得到的global feature。zi表示样本xi使用一种数据增强方式后得到的projected vector,zi’表示另一种数据增强方式后得到的projected vector。因此分子表示positive pair,分母表示negative pairτ表示temperature parameter。
    ②同一个样本xi使用两种数据增强方式后的得到样本互为positive pair,它俩与其余2N-2的样本为negative pair。
    ③这个损失函数的值要小,则分子要大、分母要小,即正样本对之间的similarity要越大越好、负样本对之间的similarity越小越好。
    3️⃣Local self-supervised contrastive loss
    (1)目标:“equation(1) might ignore some local discriminative information in feature map xi-hat which could be beneficial in meta-testing.”“boost the robustness and generalizability of the representations”
    (2)equation:
    包含两个module,map-map module局部对局部map-vector module局部对全局
    图(a)中,xa-hat、xb-hat分别表示两种数据增强方式后得到的样本的特征;三个f函数表示spatial projection head,通过这些头map就被投影成HW×D的vector了。然后分别将a与b的map相互对齐(即图中交叉的线头)、然后softmax,计算相似度,这些相似度将会用于求loss。
    图(b)中,ub表示map(DxHW),za表示特征投影后得到的vector(Dx1),传入的特征分别对应于两种数据增强方式得到的map和vector。然后对map的每个像素位置(i,j)(大小为1xD)与za做点积得到的结果再计算vector-map相似度、然后计算loss。
    最后,Local self-supervised contrastive loss等于这两个module的loss之和。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
    上式中分子是positive pair,分母是negative pair。
    在这里插入图片描述
    在这里插入图片描述
    上式中分子是positive pair,分母是negative pair。
    在这里插入图片描述
    4️⃣Global supervised contrastive loss
    (1)目标:“To exploit the correlations among individual instances and the correlations among different instances from the same category”
    (2)equation:
    在这里插入图片描述
    在这里插入图片描述
    通过作者的目标和原paper讲解,我们知道,这里的positive pair与前几个式子不太一样,这里的正样本对是被扩充了的。原来只有同一个样本被数据增强后得到的样本互为正样本对,现在不仅如此、有相同标签的也是正样本对。
    在这里插入图片描述
  2. pre-training的总LOSS如下👇
    在这里插入图片描述
    where LCE is the CE loss, and α1, α2 and α3 are balance scalars.

3 Meta-Training

在这里插入图片描述
1️⃣Cross-view Episodic Training
E表示Episode的缩写。将E视作共享上下文(shared context),将two augmented episodes视作E的两个views(看图把这两个view的特征共同输入module中去了所以叫cross-view吧)。经过GAP后,得到全局向量hi,然后计算两个集合S1和S2中每个类的原型、送入Attn模块加工得到处理后的原型(注意只有support里面的样本会被计算)。用下式计算query集合中的每个样本的概率分布
在这里插入图片描述
τ是数据增强方式的分布,d是欧氏距离,然后再计算下面的损失。m和n可以取1或2,就如图上所示计算L11 L12 L21 L22的损失
在这里插入图片描述
最后the cross-view classification loss as follows:
在这里插入图片描述
2️⃣Distance-scaled Contrastive Loss
如图所示,投影后得到的projected vector,然后用下面的式子计算得到每个class的原型。在这里插入图片描述
在这里插入图片描述
注意,求原型的时候,用的是E1和E2所有数据,在(12)中用的是Q1和Q2中的数据。式子中zi和zH互为正样本对,这里的正样本对也是扩充了的。zA是另一个样本的集合,新增了原型。
在这里插入图片描述
3️⃣total loss
在这里插入图片描述

4 Experiment

baseline是FEAT。在3个数据集上进行了实验:miniImageNet dataset、tieredImageNet、CIFAR-FS。table就不放了,看原文。然后还进行了消融实验证明每个loss function的功能。
在这里插入图片描述
在这里插入图片描述

5 Conclusion

这篇paper的损失函数很多,主要的创新点是将对比学习更好融合进two-stages的模型中去。每个损失作者都在讲解具体公式前说了下aim to……,我的阅读paper量还不够所以觉得太绕了、说不清,只能通过ablation实验明白每个loss的作用。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值