在社会网络的广阔领域内,个体如何在群体中形成和修改自己的观点是一个极富吸引力的议题。这个过程不只塑造了社交互动和群体决策,而且对理解社会变化和文化演化至关重要。为了揭示这一复杂现象背后的规律,社会科学家、心理学家和数学家共同开发了多种模型。其中,DeGroot模型[1]以其简洁明了的数学框架脱颖而出,被认为是社交网络分析中最为经典的模型,为研究观点动态提供了强有力的工具。
模型起源与基本假设
DeGroot模型由社会心理学家John R.P. French, Jr.、数学家Frank Harary以及统计学家Morris H. DeGroot于20世纪中叶独立提出和发展。模型的核心思想是,个体在社会网络中的观点受到其它个体观点的影响。每个个体的观点变化不是孤立的,而是通过社会网络中的相互作用形成的。
模型中的每个节点代表一个个体,每个个体对某一议题持有一个初始的观点或信念,这些观点可以用数值来表示,反映了个体对特定议题的态度或信念强度。
个体之间的相互影响通过社会网络的结构来体现,网络中的边表示个体间的社会联系,这些联系决定了谁会影响谁。
网络中的每条边都有一个权重 a i j a_{ij} aij,代表个体 j j j 对个体 i i i观点的影响程度。这个权重反映了个体之间影响的大小和方向。
动力学机制
DeGroot模型的核心在于观点更新的动力学机制。在模型中,个体的新观点是通过加权平均其社会网络中其他个体的观点得到的,权重由 a i j a_{ij} aij确定。这个过程可以用一个简单的数学公式表示:
p i + = ∑ j = 1 n a i j p j p^+_i=\sum^n_{j=1}a_{ij} p_j pi+=j=1∑naijpj
这里, p i + p^+_i pi+ 是个体 i i i的更新观点, p j p_j pj 是个体 j j j的当前观点。这个公式反映了一个基本假设:个体倾向于向他们认为重要或有影响力的其他人的观点靠拢。
模型中的 a i j a_{ij} aij需要满足: a i j ≥ 0 a_{ij}\geq 0 aij≥0; 对于每个个体,其自身权重和隶属权重之和等于1,即对所有 i i i的 ∑ j = 1 n a i j = 1 \sum^n_{j=1}a_ij=1 ∑j=1naij=1。用数学术语来说,就是矩阵
[ a 1 1 ⋯ a 1 n ⋯ ⋯ ⋯