编者按
本次解读的文章发表于 Operations Research,原文信息:Song, J. S., Xiao, L., Zhang, H., & Zipkin, P. (2017). Optimal policies for a dual-sourcing inventory problem with endogenous stochastic lead times. Operations Research, 65(2), 379-395.
关键词:双源;动态规划;库存策略;最优控制;随机提前期;串联队列
问题背景
从第二次工业革命开始,近代工业生产逐渐标准化实现规模效应大幅降低生产成本,轮船、火车等交通工具的也因为动力技术的提升、集装箱标准化让超大规模、远距离运输成为可能。此外,不同国家之间的工业发展程度的差异,也导致了特定产品在发展中国家和发达国家中的制造成本的价差。交通方式的改变和价差的存在,为全球化贸易创造了条件。随着1947年关税与贸易总协定的生效,近代全球化贸易体系逐渐形成,制造商可以搜寻其他国家的原材料供应商,其采购策略也逐渐发生变化。
20世纪诸多实证研究表明,众多企业已经采用双源采购(dual sourcing)的方法,来对冲单一供应商其生产或运输过程中断或长时间延误的风险,以提高企业制造过程的敏捷性,应对可能的市场需求波动的情况。同时,双源采购也可以通过采购拍卖和竞争性招标的方式,帮助企业消除采购过程中的信息不对称、从而降低采购成本。
双源采购(Dual Sourcing):这种策略指的是企业从两个不同的供应商采购同一种物料或产品。这种做法的目的是为了降低供应风险,提高供应链的灵活性和稳定性。如果一个供应商出现问题,另一个供应商可以提供支持,确保供应的连续性。
多源采购(Multiple Sourcing):这种策略指的是企业从两个以上(即多个)不同的供应商采购同一种物料或产品。相比双重采购,多源采购进一步分散了供应风险,因为依赖于更多的供应商,即使有一个或多个供应商出现问题,其他供应商也能提供支持。
双源采购涉及到对供应商地理位置、货物运输方式的选择。一般认为,从海外供应商采购(global sourcing)的采购成本低于当地采购(domestic sourcing),但当地采购可以提供更短的交货期(lead time),即采购方从开始下单订购到供应商完成生产准备交货中间所间隔的时间更短。类似地,海陆运输(shipping)的成本就比航空运输(air transportation)要低,时间更长。此外还有其他因素也可能影响采购者对供应商的选择,如产品质量、供应商生产能力、供应商履约率等,因此多源采购往往可以抽象为一个权衡采购成本和供应商服务质量的决策(过程)。
而在诸多关于多源采购的文献中,产品采购一般都按照订单交货期长短分为紧急补货(emergency replenishment)和常规补货(regular replenishment)两种方式。管理者在制定补货订单时需要决定如何准确地部署这两个源,即在什么时间向不同的两个供应商订货、以及订多少货。
关于双源采购最优策略的研究现在有两条主流:其一是在交货期确定(deterministic lead time)假设下的周期性检查策略(period-review),但截止原文章发表,研究发现,仅当两种补货方式的交货期相差不超过一个时期时最优政策的清晰结构。其二则是在交货期随机(stochastic lead time)假设下,使用系统参数来刻画最优策略,而如何准确的定义交货期时间的分布,则是该方向的主要挑战。
文章中的模型采用了两个服务器的串联系统(tandem queue system)来描述常规供应和紧急供应的交货期差异:
两个服务器的服务时间各自独立且服从不同的分布;常规订单会经过两个服务器,紧急订单则跳过第一个服务器、直接进入第二个服务器,所有订单在第二服务器处理后进入库存用于满足市场需求,因此常规订单的交货期是两个服务器时间之和。
文章的模型模拟了产品从运输到生产整个流程,第一服务器可以视为下订单后货物的运输过程,第二服务器可以视为货物到达后的加工流程,跳过第一阶段则代表紧急订单运输所需时间为 0. 因此,常规订单和紧急订单可以分别理解为海外采购和本地采购。类似地,该模型也可以模拟货物运输方式的选择,常规订单往往采用成本较低的多种运输方式联合转运(如远洋货运配合目的地的卡车转运),紧急订单则用单一运输方式直接运输到采购方。交通相关实证研究表明,由于拥堵、更换运输工具等原因,某些货物的(常规)运输的总时间确实符合多峰分布(multimodal distrubtion). 虽然用一个串联系统来模拟整个生产和运输过程只是一个粗略的近似,但文章提供了可以处理的、并有定性分析结论合理的起点。
模型构建
承接上文,文章的模型巧妙地模拟了两种采购方式交货期之间的关联,同时本文采取了新颖的方法分析模型结构、得出的最优策略也解释了对管道库存(pipeline inventory)以及对应的成本在采购决策中的重要性。
管道库存 (pipeline inventory),亦为“在途库存”或“运输库存”,指正在运输途中的库存,即从供应商发货后到达目的地之前的货物。
用 O 表示原系统,构造如下图。其中,当时间为 t t t, N 1 ( t ) N_1(t) N1(t)和 N 2 ( t ) N_2(t) N2(t)表示服务器1和服务器2正在处理或者等待处理的任务数量, I N ( t ) IN(t) IN(t)则表示净库存数量(即在手库存减去未满足库存 on-hand inventory - backorders),系统状态由 ( I N ( t ) , N 2 ( t ) , N 1 ( t ) ) (IN(t),N_2(t), N_1(t)) (IN(t),N2(t),N1(t))表示。同时假设 f ( x , y , z ) f(x,y,z) f(x,y,z)为系统起始状态为 ( x , y , z ) (x,y,z) (x,y,z)时的最优成本,其中 ( I N ( t ) , N 2 ( t ) , N 1 ( t ) ) = ( x , y , z ) ∈ Z × Z + 2 (IN(t), N_2(t),N_1(t))=(x,y,z)\in\mathbb{Z}\times\mathbb{Z}^2_{+} (IN(t),N2(t),N1(t))=(x,y,z)∈Z×Z+2. 原文分析的基本思想是,将原三维系统简化为一个等价的、易于处理的二维系统。
- 首先,文章的系统由以下几组参数刻画:
c i c_i ci: 系统 M 中,当 i = 1 , 2 i=1, 2 i=1,2时,分别表示普通订货、紧急订货的单位采购成本。
h i h_i hi: 系统 M 中,当 i = 1 , 2 i=1, 2 i=1,2时,分别表示单位时间内普通订货、紧急订货服务器中,等待或正在处理的订单持有成本。
μ i \mu_i μi: 当 i = 1 , 2 i=1, 2 i=1,2时,分别表示普通订货、紧急订货服务器的处理时间指数分布的速率。
α \alpha α: 成本折旧率。
h h h: 单位时间单位成品作为库存 (stock) 的持有成本。
b b b: 单位时间单位成品的缺货成本。
-
文章改变第一个服务器对订货成本的收费方式,是生成一个新系统,称为系统 M. 在原系统 O 中,服务器1(即常规采购)的订货成本是下订单时产生的,而系统M常规采购的订货成本在订单完成时产生。令 c 1 ~ \tilde{c_1}