编者按
大语言模型如何激发创意潜力?——揭秘不同协作模式下的广告创作奥秘
本文为Management Science期刊论文,原文信息:
-
Chen, Z., & Chan, J. (2024). Large language model in creative work: The role of collaboration modality and user expertise. Management Science.
原文摘要总结如下:
自2022年12月ChatGPT发布以来,大语言模型(LLMs)被迅速应用于帮助用户完成各类开放性任务,包括创意工作。尽管LLM的多功能性为人机协作开辟了新的途径,但如何最佳利用LLM提升商业成果仍存在不确定性。本文展开了一项实验,专门分析了人机协作的两种模式对广告创作的影响:
-
模式一:“代笔者”——让LLM承担内容生成的主力工作,为创意注入AI智慧;
-
模式二:“反馈板”——将LLM作为反馈工具,对人类编写的广告文案进行改进建议。
我们通过社交媒体广告的点击量来衡量不同模式下广告的吸引力。结果发现,协作模式和用户经验的组合会带来显著的不同效果:
-
“反馈”模式提升非专家表现:非专业的广告创作者在LLM反馈的帮助下,创作出的广告点击量显著提高,与专家创作的广告水平更加接近。
-
“代笔”模式对专家效果欠佳:当LLM全权“代笔”,非但未提升广告质量,反而在专家组中出现了广告效果下降的情况。
文本分析显示,将LLM作为“代笔者”会引发“锚定效应”,导致创作者过度依赖AI生成的初稿,限制了创意的发挥,导致内容趋于同质化。而“反馈板”模式则帮助非专家逐步优化内容,使他们的创作更接近专家水准。
关键词:大语言模型;协作模式;随机实验;广告
你认为AI在创意行业中能否真正替代人类的灵感?欢迎留言讨论!
1. 问题背景
大语言模型(LLM)作为生成式AI的代表,通过预测文本生成流畅自然的回应,在广告文案、创意任务等非例行工作中展示出惊人潜力。2023年初,生成式AI领域的投资总额达107亿美元,企业纷纷将LLM融入营销、广告等业务中。例如,可口可乐与贝恩公司合作,引入ChatGPT来协助完成涉及创意工作的市场营销。此外,Jasper和Copy.ai等公司也提供基于LLM的内容生成工具,帮助处理广告文案等创意任务,并相信这些AI工具可显著加快任务完成速度。然而,这种AI力量究竟如何最佳地与人类协作?管理者们迫切想要了解不同协作模式的效果,以便让AI真正成为创意工作中的“助燃剂”。
两种AI协作模式:代笔与反馈
为了找到答案,我们设计了一个实验,让参与者在三种不同的协作模式下为某消费产品撰写广告文案:
代笔模式:LLM负责生成初稿,用户进一步优化;
反馈模式:用户独立撰写内容,由LLM提供反馈;
对照组:用户无AI辅助,完全独立完成创作。
我们使用广告点击量来定义广告质量,这是一种常用的广告效果衡量标准。为了获得对广告实际效果的客观评估,这些广告被投放在真实的社交媒体广告活动中,捕捉每个广告的点击量作为因变量。
研究启示:如何有效利用AI提升创意质量??
结果表明,LLM在提升内容执行力上有明显优势,但在创意性提升方面效果有限。对于非专家而言,反馈模式可作为提升内容质量的“加速器”;对于专家而言,减少对代笔模式的依赖,保持创意的独特性才是关键。这项研究为企业如何在创意工作中有效整合AI提供了实用指南,也揭示了AI对创意领域