作者信息:Irem Sengul Orgut, Emmett J. Lodree
本次解读的文章发表于 Production and Operations Management,原文信息:Sengul Orgut, Irem, and Emmett J. Lodree. “Equitable distribution of perishable items in a food bank supply chain.” Production and Operations Management 32.10 (2023): 3002-3021.
关键词:公平、食品银行、粮食不安全、非营利性运营、易腐食品
摘要
在美国,食品银行 (food bank) 在帮助减少需要人口中的粮食不安全率方面发挥着重要作用,主要通过分配捐赠的食品来实现。这些食品的分配需要面临的一个主要挑战是如何公平地分配食品捐赠,使得每个服务对象理想状态下都能收到相同数量的食品。同时,食品银行还需要尽可能减少因变质和容量限制而导致的浪费。易腐食品呈现出特殊的挑战,因为它们容易腐烂,必须在保质期到期前进行分配。基于文章作者与美国东南部某大型食品银行之间长期的合作关系,文章提出了一种分配资源有限、多周期、多产品的网络流模型,旨在帮助食品银行在其服务区域内公平且高效地分配易腐食品捐赠。
文章为食品银行提供了两种方法战略性地控制不平等的分配:(i)增加满足公平性要求的周期数量;(ii)允许在完全公平分配的基础上做出偏差。研究结果表明,通过这两种方法中的任意一种进行适度的公平性偏差调整,都可以显著改善食品分配的质量和数量,并能减少食品浪费。尽管方法(ii)更为优越,但同时应用两种方法能够带来最理想的结果。文章还发现,县级容量限制妨碍了食品银行在分配易腐食品时在公平性和效率之间实现平衡的能力。文章所提出的框架为食品银行提供了在公平性与效率之间根据其优先级权衡的灵活性。
1 介绍
文章基于Feeding America食品银行网络的一个附属机构的运作展开。Feeding America监督着超过200家食品银行,每年分发大约40亿份食品给4650万人,使其成为美国最大的食品银行网络。文章考虑的Feeding America附属机构是北卡罗来纳中部和东部食品银行(FBCENC),该机构于2019年分发了超过8000万磅(重量)的食品,服务了北卡罗来纳州34个县的756,320人。虽然FBCENC分发的食品大部分是非易腐干货,但约35%的食品是易腐食品,每年约2900万磅。文章的研究重点是易腐产品的分配,如农产品、冷藏食品和冷冻食品,这些食品相较于非易腐食品更容易变质,因此在食品浪费问题中风险最大。
与大多数食品银行一样,FBCENC接收并分发四大类食品:干货、冷藏食品、冷冻食品和农产品。事实上,FBCENC处理超过50个食品类别。这些多样化的食品捐赠由FBCENC以日常形式持续接收,尽管对高容量捐赠者的计划配送安排是提前进行的。食品银行员工和志愿者会对到来的食品捐赠进行检查、分类和准备,以便存储,直到将其发运到34个县的慈善机构,或在发运前过期而被丢弃。
2 问题描述
本研究在多产品/多周期框架下,探讨了单一食品银行向其服务区域内各县分配食品的问题。在每一周期(以周为单位),食品银行从图1所示的捐赠者处 (Donors) 接收不同数量的易腐食品产品,并决定每种产品向每个县的分配量。每种易腐食品在进入食品银行供应链时,以其在接受周期内的新鲜度达到最高价值。然而,其价值在之后的每个周期都会下降,直到被安排运输或完全失去其价值。
图1:食品银行供应链网络的总体结构;文章的研究重点为从食品银行到慈善机构的分销。
FBCENC(以及一般的食品银行)希望尽可能多地分发食品,以便尽快惠及尽可能多的受益人。然而,有几个因素使得FBCENC的高效和公平分配特别具有挑战性。首先,34个县的慈善机构在接收、储存和分配给受益人方面的容量有限。县级机构依赖地方基础设施来处理来自食品银行的运输,特别是他们需要提供物资装卸设备和人力(大多是志愿者)来监督食品分配。此外,每次从食品银行送达后,他们还需要提供实际的储存空间来存放食品。所有这些资源都限制了机构能够接收的食品数量,尤其是在一些人口较少且粮食不安全率较高的县。
FBCENC面临的第二个挑战是Feeding America的公平性要求。为了保持与Feeding America的隶属关系,所有附属食品银行(包括FBCENC)必须确保每个县按照其服务的粮食不安全人口比例获得公平份额的食品,并报告其在各自服务区域内实现的公平水平。FBCENC和Feeding America采用的公平性度量称为完全公平,即每个县接收的食品量与其服务的粮食不安全人口数量成比例。他们基于每周期每县分发的食品重量除以该县粮食不安全人口数量来衡量公平性。
然而,某些县在接收、储存和分配食品方面的能力也会影响网络中实现的整体公平水平。例如,如果某个粮食不安全率较高的县因容量不足而无法接收其公平份额的食品,网络中的总体公平性就会受到影响。这突出表明了在公平分配和高效分配之间存在的权衡(即分发的食品总量或受益人数量)。在实践中,FBCENC通常会在事后通过向需求未满足且具有足够容量的县分发剩余食品的方式,对完全公平分配的偏离进行补救。然而,这种重新分配大多以非正式的方式进行。如果在一开始就有战略地计划对完全公平分配的偏离,食品银行可能会在公平性和分发食品数量方面获得更好的结果。
文章探讨了有意偏离完全公平分配的优缺点,并为战略性管理这些不公平现象提供了选项,以便在食品银行放宽完全公平性要求时实现最大的受益。FBCENC和食品银行面临的另一个挑战是管理多种易腐食品的复杂性。这些食品在不同时间被食品银行接收,并代表了在不同速率下变质的不同类别。因此,食品银行在任何时间点接收到的食品由处于不同腐败阶段的食品组成,其保质期的剩余时间各不相同。这种食品质量变化给FBCENC和Feeding America对公平性的传统解释带来了挑战。如果食品银行向两个县分配相同数量的食品,但一个县接收了100%的高质量食品(完好状态),另一个县接收了仅剩1%质量的食品(几乎过期),这能被真正视为公平吗?
研究问题
- 为了在分发的食品总量和食品浪费量方面实现显著改进,是否需要对完全公平进行大幅偏离?
- 食品银行如何通过有策略地管理目标偏离完全公平分配来更好地平衡公平性与效率的权衡?相比每个周期单独实施公平性要求,跨多个周期实施公平性要求有何影响?
- 食品变质率对于设定公平性偏离目标有何意义?
- 食品银行是否有可能在分发食品的质量和数量方面同时实现公平,还是需要在两者之间进行权衡?
文章考虑了效果 (effectiveness) 和公平性 (equity) 两个维度,将效果定义为从食品银行发出的食品总量(按磅计),在多周期规划中还包括:(i)运输时每件捐赠食品的变质量;(ii)分发食品的总量。因此,效果随变质和时间的增加而下降,随数量的增加而上升。
由于效率在食品银行运营管理文献中通常意味着成本效益,文章并未重点考虑效率目标。
为了最大化效果,食品银行必须在变质开始之前尽可能多地运输高质量食品。针对公平性,文章设置了两种控制与完全公平偏离的约束:(i)允许在用户定义的多周期时间窗口内实现公平份额;(ii)允许每周期内各县的偏离比例达到一定范围。
文章将食品银行的多产品/多周期食品分配问题建模为一个线性规划问题,目标是在县的分配能力和食品供应等约束条件下,最大化食品分配的总价值。为支持模型的构建,FBCENC 依托多年数据记录,建立了一个高精度的大规模数据存储系统,用于预测食品捐赠的总量。模型中的需求按照每县的贫困人口数量确定,该数据为规划期间保持不变的公开信息。这种需求表述方法在食品银行相关文献中较为常见,并被 Feeding America 广泛采用。
3 模型
基于问题描述,文章考虑的分配问题包含一个食品银行在多周期规划范围内接收食品捐赠,然后在其服务区域内的多个接收者之间分配这些食品。另外,文章关注的是易腐食品,其质量会随着时间的推移而变质,因此食品质量也应该在效果指标中体现。效果被定义为目标函数,其计算方式为:食品分发总量(以磅为单位)与其分发时的对应质量值的加权总和,其中质量值介于0和1之间,表示食品质量。另一方面,公平性涉及确保接收者(县)获得其公平份额的食品,并作为模型中的约束。各县在接收、储存和分发食品方面的容量限制是效果/公平性权衡的核心。例如,为了保护高价值食品,食品银行可能不得不暂时储存这些食品,直到容量允许。这可能导致高价值食品在质量较低时被分发或被丢弃。无论哪种情况,效果都会受到负面影响。
文章提出了两种完全公平分配的拓展来应对这一权衡:(i)在多个周期内实现公平份额,而非每个周期分别实现;(ii)允许与完全公平的偏离,使得各县在每个周期内接收的食品多于或少于其公平份额。
多周期、多产品框架揭示了一个额外的权衡,涉及各批次分配的食品变质程度的不同。例如:
- 优先分配高价值物品:如果优先考虑高价值物品,分配效果较好,因为这些物品在其质量最高时被分发。然而,这会导致低价值物品被浪费。
- 优先分配低价值物品:这样可以减少浪费,但以牺牲整体食品质量为代价。
这一框架还捕捉了食品质量与食品浪费之间的权衡。
设捐赠物品用 i ∈ 1 , … , m i \in {1, \dots, m} i∈1,…,m 表示,县用 j ∈ 1 , … , n j \in {1, \dots, n} j∈1,…,n 表示,时间周期用 t ∈ 1 , … , T t \in {1, \dots, T} t∈1,…,T 表示。模型从食品银行的角度描述以下决策:
- x i j t x_{ijt} xijt 表示在周期 t t t向接收者(即县 j j j)分配的食品实例 i i i 的重量(磅)。
- 县 j j j的单位容量表示为 C j C_j Cj(以磅为单位)。
- 县 j j j的需求表示为 D j D_j Dj(以磅为单位),并定义 Δ = D 1 + … + D n \Delta = D_1+\ldots +D_n Δ=D1+…+Dn.
- 捐赠实例 i i i 的重量表示为 S i S_i Si(以磅为单位)。
参数 m t m_t mt 表示第 t t t 周食品银行接收到的捐赠食品实例的数量,并定义为 m = m 1 + … + m T m=m_1+\ldots +m_T m=m1+…+mT.
模型中的目标函数表示效果,其最大化了多周期规划范围内分发的食品总重量的价值加权总和:
其中, V i , t − τ i V_{i, t - \tau_i} Vi,t−τi表示捐赠物品 i i i 在经历了 t − τ i t - \tau_i t−τi 个周期的变质后剩余的价值。
为表示每种易腐食品的变质过程,文章引入了价值函数
其中 k i ∈ 1 , … , K k_i \in {1, \dots, K} ki∈1,…,K 表示第 i i i个捐赠属于的食品类别, K K K表示食品类别的总数。 W k i ( t − τ i ) W_{k_i}(t - \tau_i) Wki(t−τi) 满足以下两个属性:
- 0 ≤ W k i ( t − τ i ) ≤ 1 0 \leq W_{k_i}(t - \tau_i) \leq 1 0≤Wki(t−τi)≤1,其中 W k i ( t − τ i ) = 1 W_{k_i}(t - \tau_i) = 1 Wki(t−