10X空间转录组数据分析补充之分子niche

本文补充了10X空间转录组数据分析中关于分子niche的内容,针对学员的疑问进行解答。文章通过示例图和实际操作,演示了如何从预处理到构建分子聚类的细胞niche,并提供了多种空间转录组分析方法,包括Seurat、scanpy等工具的应用,强调了数据分析的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者,Evil Genius~~~
空转的课上完了已经有月余了,但是还是有很多新的问题,所以需要不断补充,不过大家不要担心,新的分析脚本我会发到群里,供大家一起学习。
这一篇补充分子niche,因为在文章10X空间转录组数据分析之细胞niche分享了细胞niche的分析方法,但是还是有的学员问分子niche应该如何做,这一篇补充一下,文章的示例图如下:

学会细胞niche的做法,分子niche应该是很简单的,实现的效果如下,根据需求小部分调整即可,

我们来实现一下:
suppressMessages({
  library(Seurat)
  library(compositions)
  library(tidyverse)
  library(clustree)
  library(uwot)
  library(cluster)
  library(RColorBrewer)
})
还是以上课时的示例数据为例,关于空间转录组数据的harmony整合和单细胞空间联合的分析方法早已经教过和分享了,这次就不在重复这个过程了,直接从拿到整合和单细胞空间联合后的rds开始。
adata = readRDS('Muscle.spatial.rds')
进行数据的预处理
cluster_info <- as.data.frame(adata$seurat_clusters)

colnames(cluster_info) = 'mol_niche'

cluster_info$row_id = rownames(cluster_info)
构建分子聚类的细胞niche
integrated_compositions <- t(adata@assays$predictions@data)

integrated_compositions = integrated_compositions[,-which(colnames(integrated_compositions) %in% c("max"))]

niche_summary_pat <- integrated_compositions %>% as.data.frame() %>% rownames_to_column("row_id") %>% 
     pivot_longer(-row_id,values_to =
### 空间转录组测序的技术原理 空间转录组测序是一种能够保留基因表达空间位置信息的高通量技术,其主要目标是揭示基因表达的空间分布模式以及组织微环境中的复杂相互作用。这项技术的核心在于通过特定的方法捕获RNA分子的同时记录它们的位置信息[^1]。 常见的技术平台之一是由10x Genomics开发的空间转录组解决方案,该方案利用显微镜下的条形码阵列来标记不同区域的mRNA分子,从而实现对组织切片上基因表达的空间解析能力。 另一种值得注意的产品来自NanoString Technologies的GeoMx Digital Spatial Profiler,它能够在单一实验中同时检测多个蛋白质和上千种RNA靶标,适用于多种类型的生物样本分析[^5]。 --- ### 数据分析流程 对于空间转录组数据的分析通常涉及以下几个方面: #### 1. **质量控制** 在数据分析之前,需要对原始数据进行严格的质量评估,包括去除低质量读取、校正背景噪声等操作[^3]。 #### 2. **功能富集分析** 为了理解差异表达基因的功能意义,可以通过Gene Ontology(GO)和Kyoto Encyclopedia of Genes and Genomes(KEGG)数据库来进行生物学过程注释和信号通路分析[^2]。 #### 3. **邻域分析** 空间转录组的一个重要特点是支持基于细胞或分子层面的邻域关系研究。例如,可以构建分子niche矩阵或者细胞niche矩阵用于描述局部区域内不同类型细胞之间的交互情况[^4]。这种方法有助于识别新的细胞群体及其潜在的作用机制。 #### 4. **可视化与解释** 最终的结果往往借助于高级统计模型和机器学习算法呈现出来,并配合直观易懂的图形展示形式帮助研究人员更好地理解和验证假设。 --- ### 常见工具 Seurat是一个广泛应用于单细胞空间转录组数据分析的强大R包,提供了从预处理到下游探索的一整套解决方案。除此之外还有其他专门针对空间结构特征设计的软件如BANKSY等可用于进一步挖掘复杂的生态位信息。 --- ### 生物信息学视角的应用价值 从生物信息学角度来看,空间转录组不仅扩展了传统转录组学的研究范畴,还为疾病诊断标志物发现、药物靶点筛选等领域带来了全新的可能性。通过对正常状态与病理条件下基因调控网络变化规律的认识,科学家们有望找到更多有效的治疗策略。 ```python import scanpy as sc adata = sc.read_h5ad('spatial_data.h5ad') # 加载空间转录组数据 sc.pp.filter_genes(adata, min_cells=3) # 过滤掉表达较少的基因 sc.tl.pca(adata) # 执行PCA降维 sc.pl.spatial(adata, color='gene_of_interest') # 可视化指定基因的空间表达趋势 ``` 上述代码片段展示了如何使用Scanpy库加载并初步处理一份标准的空间转录组数据文件,接着进行了简单的过滤步骤之后再做主成分分析最后以热图的形式展现某个感兴趣基因在整个样品内的分布状况。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值