python——argwhere()函数

函数功能: 返回数组里面大于某个设定值的数对应的索引

def argwhere(a):
    """
    Find the indices of array elements that are non-zero, grouped by element.

    Parameters
    ----------
    a : array_like
        Input data.

    Returns
    -------
    index_array : (N, a.ndim) ndarray
        Indices of elements that are non-zero. Indices are grouped by element.
        This array will have shape ``(N, a.ndim)`` where ``N`` is the number of
        non-zero items.

    See Also
    --------
    where, nonzero

    Notes
    -----
    ``np.argwhere(a)`` is almost the same as ``np.transpose(np.nonzero(a))``,
    but produces a result of the correct shape for a 0D array.

    The output of ``argwhere`` is not suitable for indexing arrays.
    For this purpose use ``nonzero(a)`` instead.

    """
    # nonzero does not behave well on 0d, so promote to 1d
    if np.ndim(a) == 0:
        a = shape_base.atleast_1d(a)
        # then remove the added dimension
        return argwhere(a)[:,:0]
    return transpose(nonzero(a))

 举栗:

### 使用Python处理CT图像以去除金属伪影 在医学影像领域,金属植入物会在CT扫描过程中引入显著的伪影,这些伪影会严重影响诊断质量。为了改善这种情况,在预处理阶段应用专门算法来减轻或消除这类伪影是非常重要的。 针对CT图像中存在的金属伪影问题,可以采用基于投影数据域或者重建图像空间内的校正策略。一种常见的方式是在原始sinogram(即探测器接收到的X射线强度分布图)层面执行修正操作后再进行反向傅里叶变换得到更清晰无干扰的目标切片图片[^1]。 具体到编程实现方面,可利用NumPy、SciPy以及Scikit-image等库来进行必要的矩阵运算和滤波处理: ```python import numpy as np from skimage import io, restoration def remove_metal_artifacts(image_path): # 加载待处理的CT图像 img = io.imread(image_path) # 应用去噪算法减少噪声影响 denoised_img = restoration.denoise_tv_chambolle(img, weight=0.1) # 对于已知位置的高密度区域(可能是金属),可以通过插值方法填补其造成的条带效应 mask = create_mask_for_metal_area(denoised_img) # 需要定义此函数用于识别并标记可能含有金属的部分 corrected_image = apply_interpolation_to_restore_streaks(denoised_img, mask) # 同样需自行编写该部分逻辑完成实际修复工作 return corrected_image # 定义辅助功能:创建掩模以定位潜在的金属所在之处 def create_mask_for_metal_area(image): threshold_value = determine_threshold_based_on_histogram_analysis(image) binary_mask = (image > threshold_value).astype(int) return binary_mask # 实现具体的插值恢复技术细节 def apply_interpolation_to_restore_streaks(image, mask): from scipy.interpolate import griddata points_without_metal = np.argwhere(mask==0) values_at_these_points = image[mask==0] xi,yi = np.indices(image.shape) zi = griddata(points_without_metal,values_at_these_points,(xi,yi),method='linear') final_restored_image = np.where(np.isnan(zi),image,zi) return final_restored_image ``` 上述代码片段展示了通过移除由金属引起的条形伪影的一个简化流程框架;其中涉及到了几个自定义的关键步骤——`create_mask_for_metal_area()` 和 `apply_interpolation_to_restore_streaks()`, 这些都需要依据具体情况进一步开发完善。此外,还可以考虑结合机器学习模型预测哪些像素属于异常情况从而更加精准地实施干预措施[^2]。 值得注意的是,对于某些特定类型的环状伪影,有研究指出使用CMOS基底微CT系统验证低剂量成像下的环艺矫正算法能够取得良好成效[^3]。不过这通常涉及到更为复杂的物理建模过程,并不是单纯依靠软件就能完全解决的问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长沙有肥鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值