三相电路分析

基本概念

相电压 U p U_p Up:每相火线对中性线之间的电压
线电压 U l U_l Ul:每相火线之间的电压
相电流 I p I_p Ip:流经每相负载的电流
线电流 I l I_l Il:流经每相火线的电流
对称三相电路
相电压&线电压有:
U l ‾ = U p ‾ ∗ ( 3 ∠ 30 ° ) \underline{U_l}=\underline{U_p}*(\sqrt{3}\angle30°) Ul=Up(3 ∠30°)
相电流&线电流有:
I l ‾ = I p ‾ ∗ ( 3 ∠ − 30 ° ) \underline{I_l}=\underline{I_p}*(\sqrt{3}\angle-30°) Il=Ip(3 30°)
(下划线表示是相量)

相序

在这里插入图片描述
a),正序
b),负序
c),零序
在这里插入图片描述
注意,线电压方向

对称三相电路计算

由于是对称电路,可以
在这里插入图片描述

不对称三相电路计算

在这里插入图片描述

三相电路功率的计算

对称

P = 3 U l I l c o s φ P=\sqrt{3}U_lI_lcosφ P=3 UlIlcosφ
P = 3 U p I p c o s φ P=3U_pI_pcosφ P=3UpIpcosφ
φ角是功率因数角,
是任意一相相电压和相电流的差角
不是线电压和线电流的差角
同理,有
Q = 3 U l I l s i n φ Q=\sqrt{3}U_lI_lsinφ Q=3 UlIlsinφ
Q = 3 U p I p s i n φ Q=3U_pI_psinφ Q=3UpIpsinφ
S = 3 U l I l S=\sqrt{3}U_lI_l S=3 UlIl
S = 3 U p I p S=3U_pI_p S=3UpIp

不对称

提醒,关于不对称电路,将其当作复杂的时变电路分析即可,
电阻电路的一些分析方法依然适用
戴维南,诺顿,叠加,替代,回路电流,结点电压,电桥等等
功率不满足叠加定理
电路有功计算,只能计算出每相有功求和,
P 总 = P A + P B + P C = U p h A I p h A c o s φ A + U p h B I p h B c o s φ B + U p h C I p h C c o s φ C P_总=P_A+P_B+P_C =U_{phA}I_{phA}cosφ_A+U_{phB}I_{phB}cosφ_B+U_{phC}I_{phC}cosφ_C P=PA+PB+PC=UphAIphAcosφA+UphBIphBcosφB+UphCIphCcosφC
同理,无功也是
Q 总 = Q A + Q B + Q C = U p h A I p h A s i n φ A + U p h B I p h B s i n φ B + U p h C I p h C s i n φ C Q_总=Q_A+Q_B+Q_C =U_{phA}I_{phA}sinφ_A+U_{phB}I_{phB}sinφ_B+U_{phC}I_{phC}sinφ_C Q=QA+QB+QC=UphAIphAsinφA+UphBIphBsinφB+UphCIphCsinφC
谨慎用电压电流关系直接相乘求得
不对称的三相电路只能下式计算
S 总 = P 总 2 + Q 总 2 S_总=\sqrt{P^2_总+Q^2_总} S=P2+Q2

S 总 ≠ U p h A I p h A + U p h B I p h B + U p h C I p h C S_总≠U_{phA}I_{phA}+U_{phB}I_{phB}+U_{phC}I_{phC} S=UphAIphA+UphBIphB+UphCIphC
表明不能用各相视在功率的叠加求总的视在功率

三相功率的测量

三表法

在这里插入图片描述

两表法

在这里插入图片描述
在这里插入图片描述
P 总 = P 1 + P 2 P_总=P_1+P_2 P=P1+P2
若是对称三相电路,就有
Q 总 = 3 ( P 1 − P 2 ) Q_总=\sqrt{3}(P_1-P_2) Q=3 (P1P2)
φ = a r c t a n Q 总 P 总 = a r c t a n ( 3 ( P 1 − P 2 ) P 1 + P 2 ) φ=arctan\frac{Q_总}{P_总}=arctan(\frac{\sqrt{3}(P_1-P_2)}{P_1+P_2}) φ=arctanPQ=arctan(P1+P23 (P1P2))

对称三相电路一表法

测无功

在这里插入图片描述

测有功

由于线路是对称的,所以只需测出一相有功P×3即可

经典电路

裂相电路

在这里插入图片描述
t a n 30 ° = X C 1 R 1 = 1 3 tan30°=\frac{X_{C1}}{R_1}=\frac{1}{\sqrt{3}} tan30°=R1XC1=3 1
t a n 60 ° = X C 2 R 2 = 3 tan60°=\frac{X_{C2}}{R_2}=\sqrt{3} tan60°=R2XC2=3

R 1 = 3 X C 1 R_1=\sqrt{3}X_{C1} R1=3 XC1
X C 2 = 3 R 1 X_{C2}=\sqrt{3}R_{1} XC2=3 R1

同理,我们可以根据位形图,推出,
电感&电阻组合的裂相电路
电感、电容、电阻组合的裂相电路
不一一赘述
在这里插入图片描述

相序仪

在这里插入图片描述
在这里插入图片描述

三角函数

诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值