基本概念
相电压
U
p
U_p
Up:每相火线对中性线之间的电压
线电压
U
l
U_l
Ul:每相火线之间的电压
相电流
I
p
I_p
Ip:流经每相负载的电流
线电流
I
l
I_l
Il:流经每相火线的电流
对称三相电路:
相电压&线电压有:
U
l
‾
=
U
p
‾
∗
(
3
∠
30
°
)
\underline{U_l}=\underline{U_p}*(\sqrt{3}\angle30°)
Ul=Up∗(3∠30°)
相电流&线电流有:
I
l
‾
=
I
p
‾
∗
(
3
∠
−
30
°
)
\underline{I_l}=\underline{I_p}*(\sqrt{3}\angle-30°)
Il=Ip∗(3∠−30°)
(下划线表示是相量)
相序
a),正序
b),负序
c),零序
注意,线电压方向
对称三相电路计算
不对称三相电路计算
三相电路功率的计算
对称
P
=
3
U
l
I
l
c
o
s
φ
P=\sqrt{3}U_lI_lcosφ
P=3UlIlcosφ
P
=
3
U
p
I
p
c
o
s
φ
P=3U_pI_pcosφ
P=3UpIpcosφ
φ角是功率因数角,
是任意一相相电压和相电流的差角
不是线电压和线电流的差角
同理,有
Q
=
3
U
l
I
l
s
i
n
φ
Q=\sqrt{3}U_lI_lsinφ
Q=3UlIlsinφ
Q
=
3
U
p
I
p
s
i
n
φ
Q=3U_pI_psinφ
Q=3UpIpsinφ
S
=
3
U
l
I
l
S=\sqrt{3}U_lI_l
S=3UlIl
S
=
3
U
p
I
p
S=3U_pI_p
S=3UpIp
不对称
提醒,关于不对称电路,将其当作复杂的时变电路分析即可,
电阻电路的一些分析方法依然适用
戴维南,诺顿,叠加,替代,回路电流,结点电压,电桥等等
功率不满足叠加定理
电路有功计算,只能计算出每相有功求和,
P
总
=
P
A
+
P
B
+
P
C
=
U
p
h
A
I
p
h
A
c
o
s
φ
A
+
U
p
h
B
I
p
h
B
c
o
s
φ
B
+
U
p
h
C
I
p
h
C
c
o
s
φ
C
P_总=P_A+P_B+P_C =U_{phA}I_{phA}cosφ_A+U_{phB}I_{phB}cosφ_B+U_{phC}I_{phC}cosφ_C
P总=PA+PB+PC=UphAIphAcosφA+UphBIphBcosφB+UphCIphCcosφC
同理,无功也是
Q
总
=
Q
A
+
Q
B
+
Q
C
=
U
p
h
A
I
p
h
A
s
i
n
φ
A
+
U
p
h
B
I
p
h
B
s
i
n
φ
B
+
U
p
h
C
I
p
h
C
s
i
n
φ
C
Q_总=Q_A+Q_B+Q_C =U_{phA}I_{phA}sinφ_A+U_{phB}I_{phB}sinφ_B+U_{phC}I_{phC}sinφ_C
Q总=QA+QB+QC=UphAIphAsinφA+UphBIphBsinφB+UphCIphCsinφC
谨慎用电压电流关系直接相乘求得
不对称的三相电路只能下式计算
S
总
=
P
总
2
+
Q
总
2
S_总=\sqrt{P^2_总+Q^2_总}
S总=P总2+Q总2
但
S
总
≠
U
p
h
A
I
p
h
A
+
U
p
h
B
I
p
h
B
+
U
p
h
C
I
p
h
C
S_总≠U_{phA}I_{phA}+U_{phB}I_{phB}+U_{phC}I_{phC}
S总=UphAIphA+UphBIphB+UphCIphC
表明不能用各相视在功率的叠加求总的视在功率
三相功率的测量
三表法
两表法
P
总
=
P
1
+
P
2
P_总=P_1+P_2
P总=P1+P2
若是对称三相电路,就有
Q
总
=
3
(
P
1
−
P
2
)
Q_总=\sqrt{3}(P_1-P_2)
Q总=3(P1−P2)
φ
=
a
r
c
t
a
n
Q
总
P
总
=
a
r
c
t
a
n
(
3
(
P
1
−
P
2
)
P
1
+
P
2
)
φ=arctan\frac{Q_总}{P_总}=arctan(\frac{\sqrt{3}(P_1-P_2)}{P_1+P_2})
φ=arctanP总Q总=arctan(P1+P23(P1−P2))
对称三相电路一表法
测无功
测有功
由于线路是对称的,所以只需测出一相有功P×3即可
经典电路
裂相电路
t
a
n
30
°
=
X
C
1
R
1
=
1
3
tan30°=\frac{X_{C1}}{R_1}=\frac{1}{\sqrt{3}}
tan30°=R1XC1=31
t
a
n
60
°
=
X
C
2
R
2
=
3
tan60°=\frac{X_{C2}}{R_2}=\sqrt{3}
tan60°=R2XC2=3
即
R
1
=
3
X
C
1
R_1=\sqrt{3}X_{C1}
R1=3XC1
X
C
2
=
3
R
1
X_{C2}=\sqrt{3}R_{1}
XC2=3R1
同理,我们可以根据位形图,推出,
电感&电阻组合的裂相电路
电感、电容、电阻组合的裂相电路
不一一赘述
相序仪
三角函数
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。