def optimize_brain_mask(inputImage, kernel_radius=3):
"""
优化大脑MRI图像的mask。
参数:
inputImage: SimpleITK图像,需要优化的大脑MRI图像。
kernel_radius: 形态学操作的核大小,默认为3。
返回:
优化后的mask图像。
"""
# 初始Otsu阈值分割来生成mask
initialMask = sitk.OtsuThreshold(inputImage, 0, 1, 200)
# 形态学膨胀操作
dilateFilter = sitk.BinaryDilateImageFilter()
dilateFilter.SetKernelType(sitk.sitkBall)
dilateFilter.SetKernelRadius(kernel_radius)
dilatedMask = dilateFilter.Execute(initialMask)
# 形态学腐蚀操作
erodeFilter = sitk.BinaryErodeImageFilter()
erodeFilter.SetKernelType(sitk.sitkBall)
erodeFilter.SetKernelRadius(kernel_radius)
erodedMask = erodeFilter.Execute(dilatedMask)
# 连通域分析
labelFilter = sitk.ConnectedComponentImageFilter()
labeledMask = labelFilter.Execute(erodedMask)
# 计算连通域的大小,并找出最大的连通域
labelShapeStats = sitk.LabelShapeStatisticsImageFilter()
labelShapeStats.Execute(labeledMask)
largestLabel = None
largestSize = 0
for label in labelShapeStats.GetLabels():
size = labelShapeStats.GetPhysicalSize(label)
if size > largestSize:
largestLabel = label
largestSize = size
# 创建一个只包含最大连通域的掩码
optimizedMask = sitk.BinaryThreshold(labeledMask, largestLabel, largestLabel, 1, 0)
return optimizedMask
def n4_bias_field_correction(input_path, output_path, mask_path=None, shrinkFactor=1, numberFittingLevels=4, iterations=[250]):
# 读入图像
inputImage = sitk.ReadImage(input_path, sitk.sitkFloat32)
image = inputImage
# 如果提供了掩码图像路径,则使用,否则使用Otsu算法自动生成掩码
if mask_path:
maskImage = sitk.ReadImage(mask_path, sitk.sitkUInt8)
else:
maskImage = optimize_brain_mask(inputImage)
# maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)
# (缩小因子): 这个参数用于在偏置场校正之前缩小图像的大小,以加快算法的运行速度。默认值为1,表示不缩小图像。
if shrinkFactor > 1:
image = sitk.Shrink(inputImage, [shrinkFactor] * inputImage.GetDimension())
maskImage = sitk.Shrink(
maskImage, [shrinkFactor] * inputImage.GetDimension()
)
corrector = sitk.N4BiasFieldCorrectionImageFilter()
# numberFittingLevels使用多级分辨率策略,这个参数指定了分辨率金字塔的层数。
# iterations (迭代次数): 这个参数指定了每个分辨率级别上的迭代次数。
corrector.SetMaximumNumberOfIterations(iterations * numberFittingLevels)
corrected_image = corrector.Execute(image, maskImage)
log_bias_field = corrector.GetLogBiasFieldAsImage(inputImage)
corrected_image_full_resolution = inputImage / sitk.Exp(log_bias_field)
sitk.WriteImage(corrected_image_full_resolution, output_path)
return_images = {
"input_image": inputImage,
"mask_image": maskImage,
"log_bias_field": log_bias_field,
"corrected_image": corrected_image,
}
return return_images
SimpleITK N4BiasFieldCorrection与掩膜生成
本文介绍了如何使用Python和SimpleITK库进行大脑MRI图像的mask优化,包括Otsu阈值分割、形态学操作以及N4偏置场校正技术。函数`optimize_brain_mask`生成初始mask,而`n4_bias_field_correction`则执行缩放、校正和恢复全分辨率的完整过程。
摘要由CSDN通过智能技术生成