SimpleITK N4BiasFieldCorrection与掩膜生成

本文介绍了如何使用Python和SimpleITK库进行大脑MRI图像的mask优化,包括Otsu阈值分割、形态学操作以及N4偏置场校正技术。函数`optimize_brain_mask`生成初始mask,而`n4_bias_field_correction`则执行缩放、校正和恢复全分辨率的完整过程。
摘要由CSDN通过智能技术生成
def optimize_brain_mask(inputImage, kernel_radius=3):
    """
    优化大脑MRI图像的mask。

    参数:
        inputImage: SimpleITK图像,需要优化的大脑MRI图像。
        kernel_radius: 形态学操作的核大小,默认为3。

    返回:
        优化后的mask图像。
    """
    # 初始Otsu阈值分割来生成mask
    initialMask = sitk.OtsuThreshold(inputImage, 0, 1, 200)

    # 形态学膨胀操作
    dilateFilter = sitk.BinaryDilateImageFilter()
    dilateFilter.SetKernelType(sitk.sitkBall)
    dilateFilter.SetKernelRadius(kernel_radius)
    dilatedMask = dilateFilter.Execute(initialMask)

    # 形态学腐蚀操作
    erodeFilter = sitk.BinaryErodeImageFilter()
    erodeFilter.SetKernelType(sitk.sitkBall)
    erodeFilter.SetKernelRadius(kernel_radius)
    erodedMask = erodeFilter.Execute(dilatedMask)

    # 连通域分析
    labelFilter = sitk.ConnectedComponentImageFilter()
    labeledMask = labelFilter.Execute(erodedMask)

    # 计算连通域的大小,并找出最大的连通域
    labelShapeStats = sitk.LabelShapeStatisticsImageFilter()
    labelShapeStats.Execute(labeledMask)
    largestLabel = None
    largestSize = 0
    for label in labelShapeStats.GetLabels():
        size = labelShapeStats.GetPhysicalSize(label)
        if size > largestSize:
            largestLabel = label
            largestSize = size

    # 创建一个只包含最大连通域的掩码
    optimizedMask = sitk.BinaryThreshold(labeledMask, largestLabel, largestLabel, 1, 0)

    return optimizedMask

def n4_bias_field_correction(input_path, output_path, mask_path=None, shrinkFactor=1, numberFittingLevels=4, iterations=[250]):
    # 读入图像
    inputImage = sitk.ReadImage(input_path, sitk.sitkFloat32)
    image = inputImage

    # 如果提供了掩码图像路径,则使用,否则使用Otsu算法自动生成掩码
    if mask_path:
        maskImage = sitk.ReadImage(mask_path, sitk.sitkUInt8)
    else:
        maskImage = optimize_brain_mask(inputImage)
        # maskImage = sitk.OtsuThreshold(inputImage, 0, 1, 200)

    # (缩小因子): 这个参数用于在偏置场校正之前缩小图像的大小,以加快算法的运行速度。默认值为1,表示不缩小图像。
    if shrinkFactor > 1:
        image = sitk.Shrink(inputImage, [shrinkFactor] * inputImage.GetDimension())
        maskImage = sitk.Shrink(
            maskImage, [shrinkFactor] * inputImage.GetDimension()
        )

    corrector = sitk.N4BiasFieldCorrectionImageFilter()
    # numberFittingLevels使用多级分辨率策略,这个参数指定了分辨率金字塔的层数。
    # iterations (迭代次数): 这个参数指定了每个分辨率级别上的迭代次数。
    corrector.SetMaximumNumberOfIterations(iterations * numberFittingLevels)

    corrected_image = corrector.Execute(image, maskImage)

    log_bias_field = corrector.GetLogBiasFieldAsImage(inputImage)

    corrected_image_full_resolution = inputImage / sitk.Exp(log_bias_field)

    sitk.WriteImage(corrected_image_full_resolution, output_path)

    return_images = {
        "input_image": inputImage,
        "mask_image": maskImage,
        "log_bias_field": log_bias_field,
        "corrected_image": corrected_image,
    }
    return return_images

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

weixin_53774586

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值